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Abstract [ Objective] In response to the common low carbon to nitrogen ratio (C/N=4.5-6.0) water quality characteristics in
the operation of southern wastewater treatment plants, this paper aims to explore control strategies and technical solutions to enhance the
utilization efficiency of raw water carbon sources, reduce aeration energy consumption, and achieve efficient low-carbon denitrification.
[ Methods] Through conducting a pilot experiment of 5.0 m*/h, an efficient and low-carbon operational optimization and control
strategy for the five-stage Bardenpho process and multi-stage anaerobic-oxic( AO) were proposed. Carbon emission accounting analysis
was conducted to compare the carbon emission intensity of different biological denitrification processes, and an optimized design and
low-carbon operation strategy for wastewater enhanced biological denitrification were proposed. Simultaneously, engineering applications
had been carried out in a wastewater treatment plant in Hubei Province, in order to provide technical references for the synergistic
efficiency reduction and carbon reduction of biochemical treatment systems in future wastewater treatment plants. [ Results] By

implementing control measures such as multi-point influent and micro oxygen control, the dissolved oxygen in the pre aerobic zone was
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controlled at 1. 0~1.5 mg/L, and in the post aerobic zone it was controlled at 2. 0-2. 5 mg/L. This significantly improved the carbon
source utilization rate of the five-stage Bardenpho process and multi-stage AO process by 20. 95% , while increasing the denitrification
efficiency by 5%—14%, and achieving 2% —6% energy savings. After calculation, the total carbon emission intensity of the five-stage
Bardenpho process and multi-stage AO was 0. 229 kg CO,/m’ and 0. 211 kg CO,/m”, respectively. [ Conclusion] Compared with the
traditional anaerobic-anoxic-oxic( AAO) process, by optimizing and regulating the five-stage Bardenpho process and multi-stage AO
process, low-carbon and efficient operation has been successfully achieved, which not only improves the nitrogen and phosphorus
removal efficiency, but also synchronously achieves energy conservation and consumption reduction. To significantly improve the
denitrification efficiency of activated sludge process and promote energy conservation and carbon reduction, engineering design needs to
proactively reserve sufficient design margin and facilities, and build a precise and flexible regulatory framework. By optimizing carbon
source allocation, adjusting the mixed liquid reflux ratio, controlling sludge concentration, and adjusting dissolved oxygen

concentration, we ensure that water quality meets standards, improve efficiency, and achieve efficient resource utilization and carbon

reduction.

Keywords five-stage Bardenpho process carbon emission accounting direct carbon emission indirect carbon emission
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Tab. 1 Influent and Effluent Quality during Process Startup of Pilot Plant
iH COD/(mg-L™") KA/ (mg-L7") TN/ (mg-L7") TP/ (mg-L™") BIFY(SS)/(mg-L™")
K 175~221 16~27 26~34 2.5~3.2 86~ 186
A K 15~22 0.5~0.8 13~16 0.37~0.69 4~6
B # ik 24~27 0.3~0.4 11~14 0.43~0.57 3~5
—Z A bpifi <50 <5 <15 <0.5 <10
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Fig.2 Variation Curve of TN Removal under Different Influent Distribution
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Tab.2 Variation of C/N during the Start-Up and Optimization Control Stages
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Tab.3 Influent and Effluent Quality of Two Sets of Experimental Devices under Low Temperature
WiH S8 COD/(mg-L™") AR/ (mg- L") TN/ (mg-L™") TP/(mg-L7")

A bl SN[ 192 22.71 29.72 3.96
K HME 31 1.03 10.97 0. 46

EBRFEYE 83.85% 95. 49% 63. 14% 88.38%
B K {E 33 1.47 11.41 0.49

LERFEBE 82.81% 93. 56% 61.55% 87.76%
Henlcbr —%% A bRifE <50 <5 <15 <0.5
e HE bR e <30 <l.5 <10 <0.3

kW-h/m’, R, B AAO T 4B K 0.076 5
kW-h/m’,5 Bt Bardenpho T.ZF1Z %% A0 T.Z#E
HL M AR T 2. 48% 11 6. 80% , Y5231 T ALK 1 fiE
FEIBAT . 30 I R IR B i, o A DX i 4 o F vk
JEREHITE 1.0~ 1.5 mg/L, 75 FEAR B < d RE 114 [ B
A RARE T B AU DR | $i g S A 2803 14 [m] Bsf 52
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2.3 mWHEMZE ST
2.3.1 AZE IR

HRAfE V5 K AL B IRBGE A TP B AR B (T/

CAEPI 49—2022) I , 15 7K Ab 31 32 45 1) sk HE ik
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CO, FHERL , T (B 2R HE BN AL 15 FFE | IAFE DL W)
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Tab.4  Average Treatment Efficiency of the Experimental Device

WH 4P/ (m®-d™')  ACOD/(mg-L7") ATN/(mg-L™")  Ti5lRE/ (kg D-d™")  TIHRAIS  #HoE/(kW-h-m™)
X HRZ 60 178 20.30 3.0 0.42 0.076 5
A 60 168 21.09 4.5 0.49 0.074 6
B2 60 138 19.25 3.8 0.42 0.0713
2.3.2 RHEBCREE T HRT ik3 7.7 h, PHUR AN H KM &4 CH, 7™
(1) B BRI B R Z O Z) kA T 2 RO T YA 24k

N 5 Jron R IREH 77 AR 1) CH, B HETH0E B2 B
5,155 0. 031 1 kg CO,/m’,1fii 5 Bf Bardenpho T.#%
MZ9 A0 TH T Y CH, BHE & AH >, J5 A 7T B
JEMUR AAO TG H Y PR A DX R Bk 4 DX ER R L

X, A 2 A B X AR X T o b, X B
il 7 CH, W= AR 2 Fh T80 T Y CH, HERORE
JERAK, R T2 B 25 ST i HE R B R
i), AL T 250 Jey T LA A 2kt g ol i & AR i R

R 5 R E R

Tab.5 Direct Carbon Emission Intensity Calculation of Test Equipment

TiE WA (kgom ™) PRI BE/ (kg €O, m™) Eﬁf;ﬁﬁﬁkﬁﬁ?rﬁ/
N,O0 CH, Co, N,O0 CH, Co, (kg CO,-m™)
papitstcl 5.10x107™* 11.11x107* 0 0. 135 0.0311 0 0. 166
AH 5.30x10™ 8.69x10™ 0 0. 141 0.024 3 0 0.165
B 4.84x107* 7.52x107* 0 0.128 0.021 0 0 0. 149

— 103 —
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THAZ G AO T30 A ] B2 ik HE 5 B 43 51 oy
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Tab. 6 Indirect Carbon Emission Intensity Calculation of Test Equipment

WiH H#E/ (kg CO,-m™) PFE/ (kg CO,-m™) YI#E/ (kg CO,-m™) SR SRR AR RR B/ (kg CO,om ™)
Xt Bl 0. 066 — — 0. 066

A 0. 064 — — 0. 064

B2 0. 061 — — 0. 061

(3) EMHE R B

F5E " 2 W 3B TS K T AR R R A
0. 168 ~1. 070 kg CO,/m’ ,*F-¥J4 0. 326 kg CO,/m’,
HAE T AAO T2 ARAE 0.360 kg CO,/m’, b5
AAO T2 BAKTE 0.470 kg CO,/m’, W13 7 Fis,
W E AAO T4 .5 B Bardenpho T AIZ %% AO T.
{50 1) SR HE AR5 B2 4303 A 0. 232.,0. 229 kg CO,/m’
F10.211 kg CO,/m’*, FEIXEL T AL ELHEHER
didlE T 709 0 HAA] T g A A O B HE
T XS T D S HE R A O A R

B HE 3 5 BE ARG, {H 22 5 2R T RORMu AR, 5 B
Bardenpho T-1%id i P PR B <1 A 500 /D T REAE Bl
HEM; 29 AO 00 WU A B 42t HE 42 ) L e B
Hh B O AT A 2 b T, R HE
I8/ T 10. 24%

RS 45 R 5 HA A SR A B 22 5 7]
AE I AT AR i T 1 e P, BISOR A T A= 1l i
X2 OAL BB TTHEATH 5, AN 15 YR AL BE | 2457
Fon A& T+ 54745 M R SR Bk HECR AT
TuH

R7 AR E SRR A

Tab.7 Calculation of Total Carbon Emission Intensity of Test Equipment

BH  SEERHORIE (kg CO,-m ™) BRHERHEIR A/ (kg CO,-m™ ) BRHEBOREE/ (kg CO,-m™)  EHEBRHERLS H
X4 0. 166 0. 066 0.232 71.69%
A 0.165 0. 064 0.229 72.01%
B4 0. 149 0. 061 0.211 70. 92%

2.4 MRUEITERBRISITRRE
2.4.1 Rk

BEXTRE 7 TG K AL BT AE 4T P k1 ) A9 %
C/N /K545 5,5 Bt Bardenpho T. 2 FMIZ % AO T.7;
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(1) PEAR S BRI (C/N>6) T8 2, HiZK R
— 2 A FRUERT AR ECR AAO T 25,

(2) FEKBRIEA B (C/N=4~6,COD Jfi it k)&
4 150~250 mg/L, TN itk i 4 25 ~35 mg/L, TP
W <4 mg/L) , HKEER — 90 A brifErd, ol R
H1'5 Bt Bardenpho T.ZHIZ 9 A0 T2,

(3) EARBRIFEAS A, 7K TN o vk JE R AR T
10 mg/L B, T5 SMINARIELRAIE H 7KK BTk,

(4) 4R L5 AAO T2 075 /K Ab BT ik
Frife B i (5 o AT BR B, 7 38 2 45 47 43 4 ol 1
M AO BT, 31U 5 Bt Bardenpho T2 iE 1T,
SEIARAL AL R

(5) XF T H 7K 7K Jo 2 5K A vy 1 i 2 75 7K Ab B
J7MERER I Z Y A0 T 7, S A /b 5 s s 17 %
KRS TN ZRRFE, 29 A0 TEH T RE£,
VoSt SRR T R R, N =2 22 05 K B 43 TR TR
EE PR | 75 BLAE S bR TR BT 2% JEAE A e
P KGR IR G T, A e & e R Ak ST 34
g RE , IR EIAR T BEM H 1
2.4.2 kit

S T V5 K AL BT 32 4T R T R AT
P BESRT5 /KA LA B R G I AR R KK R
SERPR IR 1T RERE , TR BT B BOR 700 % J&
FEWERR AR BT A i S BC A R R
PIPRERESE . SOREAN BB I X A ke K & 7K B A8 fk
(BRI, 5 B S B0 B IS B 2 156 110 R S ek, D i
AL PR K R AR 2 18 1T

(1) BFXF R Tl B4 A o it i s K b )
A S B AR A ) 22 A5 R K TR, SR K 430 5 |
N e S A DX a1 S R Ak BT I I A
TR ARHE A [R12E K K 5T B HE O, 815 E 7K ik
G A

(2) a5 AR A i AT R, AR AR X A
22~ B P RS DX, IR I ST I MRS i, SIS
Z A T 2R D, B AL B 1

(3) P A SR B RT3 15 4, SR FH K /IN A
&R T3, ok s il B A R 55 1 A AR AR
FHRE WIS 3R B8 LA B e A I 2R 5 (i S A
KA RALEF ), 52 B il S0 S5 B 8 4, 35 21 7 B
ik

(4) 24 A Al 481X P R0 40 DX 3R P A 4 4
B, 07 25 R R HE U A S PR G, B Lk s U

Tk
2.4.3 Xtkisty

MR FHIEAETS P T2 AL FAIK C/N {5 /K I, AT
IERARAN ] SR DX P il TR A 3 b T e vk
JEE RIS it S, ST KK B A AR R

(1) 7KL= T 16 C B, Al SR IO AR 4 il 5k Ak i
R4 T DR A 2 DX il AR5 R A T
1.0~ 1.5 mg/L, #4503 X ¥ fft S8 B R 67 T 2
mg/L Ze 47, LMK TN BT B AR T 10 mg/L, i
K TP et ¥ FEER T 0. 3 mg/L,

(2) KIBAR T 16 °C A, ] 38 1k 384 K P [l 37 | 4k
A5 VIS | $ = 75 Ve TV B (4 000~ 5 000 mg/L)
FEE IR (2. 0~2. 5 mg/L) {RE /KK B IAFR .,

(3) TR AEA AR U5 () 175 50 T 42 /35 SR A 4
B EURCR v 2R 22 i R KA it ok 2 TG A58 A Al D 44
FE, IR K AL B OO0 Ak 8 B N e A T, FR
TR EBRBERCR G LU A R H AR, Wl 23 K s
SRR X K LU, 2 DABRBE A B ARES Al 5
KIA X kK B,

3 MRS
3.1 IE#HR

WAL TG KA BT AL BB A 15 U7 m'/d,
FR T2 3R B« TR AL B+ A A O+ 25 250 78 35 th, + 2F 4 s
FRUEMHEEE", KK BT RS Kb 38 s
JeWHETL bR E) (GB 18918—2002) — 2 A Frifi,
2022 4F N Tk — 20 5T KoK BT, B ARIE 1T RE
Bttt it , I R SRR AR 15 7K A I A AR R
3.2 RUIBEITESH

A AR A HRT 4 15.0 h, Ho fisi4a(X 0.5 h,
JRAIX 1.5 h BREIX 5.1 h #H5IX 7.9 h, A4kl
TSR TRV T 3 000~ 3 500 mg/LL, I 480 R i v
R TR E N 1.8~2.3 mg/L, J T Ak ik k
JT kM HE R, T AN T S AR AR s T R

(1) BEEBKIRET 16 CHE B4 X R i 175 it
AR E 1.0~1.5 mg/L;

(2) & ZEIKIBART 16 °C B, 3 i 48 A Py 7] 3
FER TGRS AT YR BT BE % 5 000 me/L LI
FIE AR (2. 0~2. 5 mg/L) AR H 7KK Bk

FERBEZ A, 157K K e BE AR F IR E 4 s
A AR AL B I K, 38 J S D i AR TSV i — 20
FEA% G217 1 B A BT B ik 3] 2 me/L L)
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Lo AT IR R AR sl A 2
ANl AR R TR TR RS,
3.3 #rHKkKER

m= 8 fr/x, #E7K COD i ik £k 50 ~ 150
mg/L, H{E A 110 mg/L, 7] WK COD ¥ & i H.
A K TN B ik B 23 ~ 37 mg/L, ¥{E
4 28.9 mg/L,C/N Ay 3.8, KA RS bk A A
B Gtz tT, oK TN Fi kR ERKE
10 mg/L LA, Al 0 26 B BR B 25 50 1046 Bh T, HiK
TP F i B AR 8 fR 4776 0.3 mg/L LA, Btk
T AN [ R i ) SRR s AT A AR T T
ISR, SEER T 15 /K AL B R SRS T H R

R 8 IH/KALB) KK B
Tab. 8 Influent and Effluent Quality of the WWTP

) CcoDn/ A/ TN/ TP/
HH -1 -1 -1 -1
(mg-L7)  (mg:L7) (mg-L7) (mgL)
HEIKK BT 50~ 150 20~28 23~37 2~4
7KK B 15~21 0.5~1.8  9.6~10.0 0.24~0.26
—4 A bR <50 <5 <I5 <0.5
= HE bR <30 <1.5 <10 <0.3

3.4 ERHEMSHT

2021 4F, % ¥5 7K 4k # T AL PR OAFE D 0,15
kW -h/m’  Ab P 25 FE (445 R & S A4S R N IR
Jie KA TRENZE) 9 0. 061 kg/m®, 15 Yk Wy b HE i 588
JE 43514 10. 28 kg CO,-eq/ (kg TN) F1 1. 03 kg CO,-
eq/ (kg COD) . 2022 4E N HIZHE ARG | x5 K b 38
J AN AE FRE T 0.03 kW-h/m* (#2118 15 J7 m’/d,
FHEAETT A HLAE 164 T3 kKW -h) X T 2021 4F | Hy,
FEREARIAH] 20% ; AL BRZGHE R % 1 0. 002 kg/m* (§%
S 7 m’/d, H AT A 25%E 109.5 ), X T
2021 4 ZHFEREAR 3. 3% ; 15 YW h HE RT3 5 43 90 N
9.06 kg CO,-eq/ (kg TN) Fl 1.00 kg CO,-eq/( kg
COD) . B, B AR G 15 Y Mt HE O B AR T
0.06 kg CO,-eq/ (kg COD) Fll 2. 85 kg CO,-eq/ (kg
TN) , AFRRHERCE D T 693. 44 t CO,-eq.,

PE— PP I T K AR B ) A S AR HEBOK
Zo8% B, 2022 4F 75 K b B B Ak HE i 3k #)
3497.82 t CO,-eq/a, [MFEBRHE =L ] 10 134. 79
t CO,-eq/a; 15 U b 3 T 42 ik HF 5 35 3] 830. 71
t CO,-eq/a, MHEMRHEEIAF] 1 124.20 t CO,-eq/a;
SRR IR F] 12 965. 99 t CO,-eq/a, Hrik HENL
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SR N 0.22 kg CO,-eq/m’ . ZWBF, H BTFR FHI5 7K
SEFRT SRR B HECR BETE 0. 29 ~ 1. 34 kg CO,-
eq/m’ SEHIME R 0. 70 kg CO,-eq/m’, KL, %75 K
AP A AR A BT 0 Rk D [ 4
B0, WRHE T A5 3 (2 R
4 Z5ig

(1) ET X R I7 V5 7K AL BT 38 47 Hh 3t 3k 388 31 (14 8%
C/N(4~6) KBTHE A, il 2T 22 5 /K R R ) 0o
AT TERR DR AR AR, R T 20. 95% 11 K P Btk T
R 5 5% ~ 14% 1 ROE LI A 30R, 555
AAO T2 AT SEH 2% ~ 6% B HLFEST 2, RE WS A 23U f2
PTG AL BR ) (RS BERRR

(2) 3 5 22 A FE KR B4R R g 5 B,
Bardenpho T FIZ2 2% AO T A Bk HE R 5 5 43 5]
J9°0.229 kg CO,/m* F10.211 kg CO,/m*, 515 1)
AAO T AL, B T & 35 A I 1 REA 34, 77
AL HeisoK T IF e TR H ikt Ab B
HLAFE N 20% , 25 FE T R 3.3%, BA Tz (1 1 H
5o

(3) R T R E I A IWEETS I T 2 A AL
FIFHE RNk H AR 09 S, T AR BT b iR
P T RS T A HLA RO B A R 5 i, DA
PIOKG E R TE AR A AE SR R UL A - R O
ACANTR] B2 I0E DX 358 P 14 Al 1 4 TG R s R R TR
TR0 3AE LU 051 K 4 il T 0 e B LA B 2 R A T A
SR P A i, BEMS A O HH /KK BRI A , AT ZE
PETF b AL A A ) B S92 B0 8 Y5 A 1 280R1 55 i
T BT
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