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摘　 要　 【目的】　 传统纳滤膜的性能受限于“选择性-渗透性”之间的权衡效应,限制了其在高效分离领域的应用。 为突破

该性能瓶颈,研究人员在薄层复合膜(TFC)制备过程中引入纳米材料,开发出一系列薄层纳米复合膜(TFN),这类膜通过纳米

材料的嵌入有效调控了膜表面的物理化学性质,从而提升膜的整体分离性能。 【方法】 　 然而,纳米材料种类众多,其多元特

征与膜结构参数之间复杂的耦合关系,使多功能 TFN 的合理设计面临挑战。 为此,本研究引入机器学习方法,综合考虑纳米

材料性质与膜结构参数对膜分离性能的影响,构建了可同时预测膜通量与截留率的多输出机器学习模型。 【结果】 　 通过模

型可解释性分析,揭示了影响 TFN 分离性能的关键决定因素,明确了纳米材料性质、膜结构参数与分离性能之间的构效关系。
在此基础上,基于粒子群优化算法(PSO)对“选择性-渗透性”之间的权衡关系进行了优化,基于对性能影响的关键因素,结合

多变量分析方法,提出了 TFN 膜的优化设计策略。 【结论】　 本文为高性能纳滤膜的设计提供了理论支撑与技术路径。
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Abstract　 [Objective]　 The
 

performance
 

of
 

conventional
 

nanofiltration
 

( NF)
 

membranes
 

remains
 

fundamentally
 

constrained
 

by
 

the
 

intrinsic
 

trade-off
 

between
 

selectivity
 

and
 

permeability,
 

representing
 

a
 

major
 

limitation
 

for
 

advanced
 

separation
 

applications.
 

To
 

break
 

through
 

this
 

performance
 

bottleneck,
 

researchers
 

introduced
 

nanomaterials
 

in
 

the
 

preparation
 

process
 

of
 

thin-film
 

composites
 

( TFC)
 

and
 

developed
 

a
 

series
 

of
 

thin-film
 

nanocomposites
 

( TFN).
 

This
 

type
 

of
 

membrane
 

effectively
 

regulates
 

the
 

physical
 

and
 

chemical
 

properties
 

of
 

the
 

membrane
 

surface
 

through
 

the
 

embedding
 

of
 

nanomaterials,
 

thereby
 

enhancing
 

the
 

overall
 

separation
 

performance
 

of
 

the
 

membrane. [Methods]　 However,
 

there
 

were
 

numerous
 

types
 

of
 

nanomaterials,
 

and
 

the
 

complex
 

coupling
 

relationship
 

between
 

the
 

diverse
 

characteristics
 

of
 

nanomaterial
 

properties
 

and
 

membrane
 

structure
 

parameters
 

poses
 

challenges
 

to
 

the
 

rational
 

design
 

of
 

multifunctional
 

TFN
 

membranes.
 

To
 

this
 

end,
 

this
 

study
 

introduced
 

machine
 

learning
 

method,
 

comprehensively
 

considering
 

the
 

influence
 

of
 

nanomaterial
 

properties
 

and
 

membrane
 

structure
 

parameters
 

on
 

membrane
 

separation
 

performance,
 

and
 

constructed
 

a
 

multi-
output

 

machine
 

learning
 

model
 

that
 

could
 

simultaneously
 

predict
 

membrane
 

flux
 

and
 

rejection
 

rate. [Results]　 Through
 

the
 

analysis
 

of
 

model
 

interpretability,
 

the
 

key
 

determinants
 

influencing
 

the
 

membrane
 

separation
 

performance
 

of
 

TFN
 

were
 

revealed,
 

and
 

the
 

structure-
activity

 

relationship
 

among
 

the
 

properties
 

of
 

nanomaterials,
 

membrane
 

structure
 

parameters
 

and
 

separation
 

performance
 

was
 

clarified.
 

On
 

this
 

basis,
 

in
 

addition,
 

the
 

trade-off
 

relationship
 

between
 

" selectivity
 

and
 

permeability"
 

was
 

optimized
 

based
 

on
 

the
 

particle
 

swarm
 

optimization
 

(PSO)
 

algorithm.
 

Based
 

on
 

the
 

key
 

factors
 

affecting
 

performance
 

and
 

combined
 

with
 

the
 

multivariate
 

analysis
 

method,
 

the
 

—641—



optimization
 

design
 

strategy
 

of
 

TFN
 

membrane
 

was
 

proposed. [Conclusion] 　 This
 

paper
 

offers
 

theoretical
 

insights
 

and
 

a
 

data-driven
 

framework
 

for
 

the
 

design
 

of
 

high-performance
 

nanofiltration
 

membranes.
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　 　 随着工业化进程的加快,水资源短缺和水污染

问题愈加严峻,严重威胁着社会的可持续发展[1-2] 。
纳滤技术凭借其超高的选择性和荷电特性,能够有

效分离单 / 多价离子,已在海水淡化、饮用水净化、浓
盐废水回收等领域展现出广阔的应用前景[3-4] ,也
已成为解决水资源匮乏、应对水污染以及实现资源

化利用等领域极具潜力的新型膜分离技术。 作为纳

滤技术的核心,纳滤膜材料的开发至关重要。 目前,
界面聚合( IP)法凭借其简单、高效、稳定的特性成

为制备纳滤膜的主流技术[5-6] 。 该方法通过在多孔

支撑基底上,由水相的胺类化合物与有机相的酰氯

化合物在界面处发生缩聚反应形成聚酰胺分离层。
然而,IP 过程受到扩散控制的限制,水油两相单体

之间的反应常常无法精确控制,导致界聚酰胺分离

层的结构不稳定,可能出现膜结构过于致密或过于

疏松,甚至形成缺陷[7] 。 这种结构不稳定性会导致

纳滤膜性能下降,从而限制其在实际应用中的广泛

推广[8] 。
近年来,随着有序纳米通道构建与精确孔径调

控技术的不断发展,纳米材料已成为提升纳滤膜性

能的关键突破口。 将功能性纳米材料引入聚酰胺

层,制备薄膜纳米复合膜(TFN),不仅能增强膜表面

的理化特性,还能在选择性层中构建额外的水分子

传输通道,从而显著提升膜的分离性能[9-10] 。 研究

人员已将诸如沸石咪唑骨架(ZIF) [11] 、金属有机框

架(MOFs) [12] 、碳纳米管( CNT) [13] 以及二维过渡金

属碳 / 氮材料(MXene) [14]等新型纳米材料引入聚酰

胺分离层,大大促进了 TFN 在渗透性和选择性方面

的性能提升。 这一性能提升主要依赖于纳米材料的

尺寸、形态和结构特性,尤其是在膜孔径分布、表面

亲水性及荷电状态调控方面的作用。 此外,纳米材

料的掺杂位置及负载率等因素也对 TFN 的最终性

能起着至关重要的作用[15] 。 除了纳米材料本身,膜
的结构参数在调控 TFN 性能方面也扮演着重要角

色。 例如,减小孔径、增大膜表面负电荷以及提高亲

水性均有助于提升脱盐性能[16] 。 总体而言,TFN 的

分离性能受纳米材料特性与膜结构参数的协同调

控。 传统的膜材料开发方法通常依赖经验性试验测

试,但由于纳米材料种类繁多、性质差异显著,且多

种成分之间的相互作用往往复杂且具有非线性特

征,难以进行全面的定量与定性分析,也难以深入揭

示影响分离机制的决定性因素。 随着大数据和人工

智能时代的到来,机器学习方法在处理复杂非线性

问题和大组合空间问题上展现出高效且精确的优

势[17-18] 。 结合试验数据与机器学习方法,不仅可以

高效预测 TFN 膜的分离性能,减少试验时间和成

本,还能深入挖掘微观结构与宏观性能之间的构效

关系。 Zhang 等[19]利用深度学习算法预测聚酰胺纳

滤膜的通量和截留,通过分子增强扩大数据量实现

精准预测。 Wang 等[20]通过知识嵌入开发了数据知

识共同驱动的机器学习模型,探索了其在理解纳滤

膜对有机污染物截留方面的应用。 机器学习方法在

纳滤膜性能预测与优化中展现了显著的潜力,能够

为膜材料的设计与性能提升提供有效的理论指导。
本文提出了一种基于人工神经网络( ANN)的

TFN 性能预测模型,旨在预测纳滤膜的通量和截盐

性能。 通过收集文献中关于纳米材料尺寸、维度、加
载量、孔径、聚酰胺层厚度、水接触角、Zeta 电位、粗
糙度以及氧氮比(O / N)等关键参数,构建 TFN 膜性

能数据库。 通过相关系数矩阵筛选非共线特征对 5
种不同的机器学习算法进行训练和测试,选择最佳

的预测模型。 通过 SHAP 算法揭示各个因素对膜性

能的影响程度。 结合粒子集群优化(PSO)算法优化

通量与截留之间的权衡效应,确定了重要影响因素

的最佳参数范围,为 TFN 材料的高效开发和性能优

化提供了理论依据和实践意义。
1　 方法
　 　 本文提出了一种基于机器学习揭示 TFN 影响

分离性能的决定性因素探究。 工作流程如图
 

1
 

所

示,接下来将详细介绍其中涉及的研究步骤。
1. 1　 数据库构建

　 　 首先,在 Web
 

of
 

Science 数据库检索了近年来关

于采用 IP 技术制备 TFN 膜的研究文献,从 30 篇期刊

论文中共提取了 1
 

040 条相关数据。 在数据预处理

阶段,剔除了缺失项与异常值。 根据整理后的数据,
重点提取了纳米填料的理化特性(如名称、粒径、维
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图 1　 用于探究 TFN 膜影响因素工作流程

Fig. 1　 Workflow
 

of
  

Influencing
 

Factors
 

for
 

Exploration
 

of
 

TFN
 

Membranes

度、形貌、掺杂位置及添加量)、膜的结构参数(包括支

撑层类型、孔径、O / N、聚酰胺层厚度、表面粗糙度、水
接触角和 Zeta 电位)以及膜性能指标(通量与截盐

率)。 孔径采用分子量截留法( MWCO) 进行测定,
Zeta 电位则通过流动电位分析法获取。 截盐性能的

评价涵盖了 4 种典型盐对:NaCl 和 MgSO4(对称盐)
以及 Na2SO4 和 MgCl2(非对称盐),分别计算其截留

率作为表征指标。
1. 2　 机器学习模型

　 　 在本研究中,纳米材料的性质与膜结构参数被

作为机器学习模型的输入特征。 为降低特征间强相

关性可能引发的多重共线性问题,在模型训练前计

算了各特征间的 Pearson 相关系数( r),如式(1)。
图 2 展示了 13 个输入特征之间的 Pearson 相关矩阵

分析结果。 虽然未发现相关系数超过 0. 9 的特征

对,但观察到纳米材料的形状与其分类之间存在较

高的相关性。 这种相关性可归因于不同维度的纳米

材料通常对应特定形貌:一维材料多为管状或线状,
二维材料为片状,而三维材料则呈块体或球形。 基

于此,为降低冗余性,将“纳米材料的形状”特征剔

除,仅保留“纳米材料的维度”作为其分类代表,其
他特征保持不变。 最终,共有 12 个输入特征被用于

模型训练与预测:纳米材料维度、纳米材料尺寸、掺

杂位置、盐类型、负载量、膜孔径、基底、O / N、聚酰胺

层厚度、表面粗糙度、水接触角、Zeta 电位。 为了比

较不同算法的预测性能,选用 5 种典型的机器学习

模型, 包括决策树 ( DT )、 SVM、 极 限 梯 度 提 升

(XGBoost)、RF 和 ANN。 训练过程中,随机将数据

集划分为训练集(80%)和测试集(20%),并引入五

折交叉验证策略以降低过拟合风险。 模型首先在训

练集上进行训练,学习输入特征与目标值(如通量、
截留等)之间的关系。 随后,在测试集上评估模型

性能,检验其泛化能力和准确性。 为了进一步减少

过拟合的风险并提高模型的稳定性,引入了五折交

叉验证策略。 最终,通过性能优越的模型识别出影

响膜分离性能的关键因素。 为了全面评估各模型的

预测性能,通过比较真实值与预测值之间的误差来

衡量模型的准确性。 为此,采用了决定系数(R2 )、
平均绝对误差(MAE)、均方根误差(RMSE)和平均

绝对百分比误差 ( MAPE ) 4 项指标, 其计算如

式(2) ~式(5)。 R2 越大,MAE、RMSE 和 MAPE 越

小,代表机器学习模型的预测性能越好。

r =
∑

n

i = 1
(X i - 􀭵X)(Yi -􀭵Y)

∑
n

i = 1
(X i - 􀭵X) 2 × ∑

n

i = 1
(Yi -􀭵Y) 2

(1)
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R2 = 1 -
∑

n

i = 1
(X i -X̂ i) 2

∑
n

i = 1
(X i - 􀭵X) 2

(2)

RMAE =
∑

n

i = 1
X i -X̂ i

n
(3)

RRMSE =
∑

n

i = 1
X i -X̂ i( ) 2

n
(4)

RMAPE = 100%
n ∑

n

i = 1

X̂ i - X i

X i

(5)

其中:X i 和 Yi———模拟值;
􀭵X 和􀭵Y ———平均值;
X̂ i ———预测值;
n———个数;
i———第 i 个数据;
RMAE———MAE;
RRMSE———RMSE;
RMAPE———MAPE。

图 2　 输入特征组成的
 

Pearson
 

相关矩阵

Fig. 2　 Pearson
 

Correlation
 

Matrix
 

of
 

Input
 

Features

1. 3　 SHAP特征重要性分析

　 　 为了深入理解所构建的机器学习模型并为后续

的膜材料设计提供具有参考价值的理论依据,本研

究引入 SHAP 方法对模型进行了可解释性分析,旨
在识别影响膜性能的关键输入变量[21] 。 SHAP 是

一种源自博弈论的模型解释工具,能够量化各输入

特征对模型输出结果的个体贡献。 其原理在于将每

个特征视为博弈中的一名“参与者”,通过计算其在

所有可能特征组合中的边际贡献,揭示其对预测值

的影响程度。 在解释模型时,正的 SHAP 值表示相

应特征与膜性能呈正相关,而负的 SHAP 值则表明

该特征可能对膜性能产生抑制作用。 特征的 SHAP
值绝对值越大,说明该特征对模型输出的重要性越

高。 通过式(6)可计算得到每个输入特征的 SHAP

值,从而量化其在膜性能预测中的作用。

Øx(p) = ∑
S⊆N/ x

| S | ! (n -| S | - 1)!
n!

[p(S ∪ x) - p(S)] (6)

其中:S———不包含特征 x 的特征子集;
p(S ∪ x) ———包含 x 特征的模型预测

结果;
p(S) ———不包 含 特 征 x 的 模 型 预 测

结果。

2　 结果与讨论

2. 1　 机器学习模型性能评价

　 　 为筛选出适用于 TFN 膜性能预测的最佳机器

学习算法, 本研究对 5 种模型即 DT、 SVM、 RF、
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XGBoost 和 ANN 分别进行训练与测试。 模型均以

多输出结构构建,以同时预测通量和截盐率目标变

量。 相比传统的单输出模型,多输出机器学习模型

在处理多个预测任务时能共享输入信息与模型参

数,尤其适用于研究通量与截留率之间潜在的耦合

关系,有助于提升整体预测精度。 图 3 ( a) 与图 3
(b)展示了基于不同评价指标下 5 种机器学习模型

对通量与截留率的预测性能。 对于通量预测,ANN
 

表现 最 优, 其 决 定 系 数 R2 达 到
 

0. 88, 同 时 在
 

RMSE、MAE 和
 

MAPE 方面亦表现出最低误差。 在

截留率预测方面,ANN
 

同样展现出稳定的性能,R2
 

为 0. 84,RMSE
 

为 11. 61,MAE 为 6. 82 和
 

MAPE 为

12. 65%,显示出对膜分离性能的良好预测能力。 相

较之下,截留率的预测精度略低于通量,这可能归因

于其更为复杂的影响机制,如离子种类、电荷、强度

与极性等未被纳入输入特征的因素。 综合比较各模

型性能,预测准确性依次为 ANN>XGBoost>RF>DT>
SVM。

图 3　 不同机器学习算法性能对比

Fig. 3　 Performance
 

Comparison
 

of
 

Different
 

Machine
 

Learning
 

Algorithms

　 　 图 4 进一步分析了模型预测值与试验值的一致

性。 蓝点代表训练数据, 黄点点表示测试数据。
ANN 模型在 2 个数据集上均展现出高度拟合性,大
多数预测值分布于 90%的置信区间之内,且沿对角

线呈线性分布,说明模型未出现过拟合。 此外,在通

量为 40 ~ 50
 

L / ( m2·h·bar) (1
 

bar =
 

100
 

kPa) 内,
ANN 的预测表现略有下降,推测可能是该区间内的

训练样本稀缺,导致模型学习不足。
2. 2　 基于 SHAP方法的影响因素探究

　 　 综上所述,ANN 模型在 5 种机器学习算法中展

现出最优的预测能力,因此,选择该模型作为基础,
利用 SHAP 方法对输入特征的重要性进行可解释性

分析,以识别影响 TFN 膜分离性能的主导因素。 图

5 展示了排名前 12 位的关键特征在模型中的重要

性评估结果。 从整体趋势来看,纳米材料的属性对

通量的影响显著大于其对截留率的作用。 这一现象

可能源于纳米材料主要通过在膜中构建额外的水分

子传输通道,从而增强膜的渗透性能;而在截盐方

面,其作用较为有限。 事实上,TFN 对无机盐的截留

主要依赖于尺寸排阻与静电排斥机制。 值得注意的

是,将纳米填料引入 IP 过程可能因其团聚效应扰乱

单体的聚合行为,从而对截留性能产生一定负面影

响。 在所有输入特征中,“纳米材料维度”对通量的

贡献最为突出,其次为“水接触角”和“Zeta 电位”等

因素。 SHAP 分析结果表明,纳米材料维度与通量

呈正相关关系,说明随着材料维度的增加,渗透性能

提升越显著。 这可能归因于三维纳米材料 [ 如

MOFs 和共价有机框架( COFs)]本身具备高度有序

的多孔结构,能为水分子提供更多的运输通道,相比

一维或二维材料更具优势。 在截留率方面,“盐类

型”被识别为影响最为显著的变量。 不同种类的无

机盐在粒径、价态及离子强度方面差异显著,TFN
 

膜在对称盐与非对称盐截留过程中所体现的机

制亦存在不同,因此,其预测表现敏感性更高。
Zeta 电位对通量和截留均产生了重要影响。 通

量和截留的 SHAP 值随着 Zeta 电位值减小而显
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图 4　 ANN 模型训练集与测试集性能对比

Fig. 4　 Performance
 

Comparison
 

of
 

ANN
 

Model
 

on
 

Training
 

Set
 

and
 

Test
 

Set

图 5　 TFN 膜影响因素的特征重要性分析

Fig. 5　 Feature
 

Importance
 

Analysis
 

of
 

Influencing
 

Factors
 

for
 

TFN
 

Membranes

著提高。 这是由于用于脱盐的纳滤膜通常为带

负电的膜,其表面电位越负,与无机盐离子之间

的道南效应越强,从而增强了对无机盐离子的排

斥作用,有利于提高截留效率。 此外, “ 水接触

角”对截留率也有重要影响。 较小的接触角意味

着膜表面更具亲水性,这将减弱膜表面与盐离子
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的吸附作用,从而有效阻止盐离子穿透膜层,提

高其截留效率。
2. 3　 PSO 算法优化权衡效应

　 　 长期以来,通量与截留率之间的权衡效应一

直是限制 TFN 膜性能提升的关键瓶颈。 基于前述

分析结果,发现多种因素均会影响该权衡关系,如
膜孔径、纳米材料的尺寸与维度等。 借助 ANN 模

型,可实现对多特征输入下膜性能的快速预测,为
权衡效应的优化提供了技术支持。 与膜结构参数

相比,纳米材料性质在试验中具有调节可及性。
因此,本研究引入 PSO 算法,以纳滤膜制备过程中

易于调控的重要特征,即纳米材料的尺寸与维度

作为优化变量,旨在探索缓解权衡效应的可行制

备策略。 图 6( a)与图 6( b)展示了在二维参数空

间中调整尺寸与维度对通量和截留率的影响。 结

果显示,随着维度的增大,通量显著提高,但截留

率有所下降,说明两者间存在典型的性能权衡关

系。 为在不同目标需求下优化该权衡效应,构建

了基于多目标函数的综合性能指标,并通过 PSO
算法进行优化。 在此基础上,设定不同权重以反

映多种膜应用场景的性能侧重点。 例如,饮用水

处理关注高通量,有机污染物去除侧重高截留率,
而废水回用则要求通量与截留兼顾。 如图 6( c)所

示,当通量和截留具有同等重要性时,大维度、小
尺寸的纳米材料,如二维纳米片和三维多孔纳米

材料,能够显著提升两项性能,突破传统的权衡限

制;当截留的权重更高时,小维度、小尺寸的材料,
如纳米粒子和量子点,与大维度、小尺寸的材料组

合,如二维纳米片和三维多孔纳米材料,均表现出

良好的优化效果;而在以通量为主要优化目标的

场景中,大维度、小尺寸的二维纳米片和三维多孔

纳米材料同样展现出了优势。 这些结果为根据不

同应用需求定制 TFN 提供了理论指导与参数优化

路径。

图 6　 尺寸-维度对性能影响的等高线图

Fig. 6　 Contour
 

Maps
 

of
 

Size-Dimension
 

Effects
 

on
 

Performance

3　 结论
　 　 本研究提出了一种基于机器学习的方法,用于

系统挖掘影响 TFN 性能的关键因素并优化其通量

与截留之间的权衡效应。 首先,基于 IP 方法,构建

了一个涵盖纳米材料属性、膜结构参数及分离性能

的大规模 TFN 膜数据库。 在特征工程筛选的基础

上,分 别 对 5 种 机 器 学 习 模 型, 即 DT、 SVM、
XGBoost、RF 和 ANN 进行了训练与测试。 结果表

明,ANN
 

模型在通量与截留率的预测任务中表现最

优,具有较高的拟合精度与泛化能力。 进一步结合
 

SHAP
 

方法对模型进行了可解释性分析,揭示出纳米

材料的性质与膜孔径为影响
 

TFN
 

膜性能的主要决定

因素。 在此基础上,本研究引入 PSO 算法,对纳米材

料的尺寸与维度进行多目标优化,以平衡通量与截留

之间的权衡效应。 通过设定不同应用场景下的权重

策略,明确了多种工况下优化膜性能的纳米材料筛选

方案。 结果显示,大维度、小尺寸类型的纳米材料在

多个权衡场景下均能有效提升膜的综合性能。
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　 　 　 表 3　 直接运行费用
Tab. 3　 Operation

 

Cost

项目名称 基本数据

处理水量 12
 

000
 

m3 / d

泥渣绝干量 3. 8
 

t / d

总耗电量 1
 

354
 

kW·h / d

电费单价 0. 85
 

元 / (kW·h)

絮凝剂消耗量 0. 027
 

t / d

絮凝剂单价 20
 

000 元 / t

聚合硫酸铁消耗量 0. 36
 

t / d

聚合硫酸铁单价 400 元 / t

磁粉消耗量 0. 06
 

t / d

磁粉单价 2
 

600 元 / t

药剂费 0. 08 万元 / d

电费 0. 11 万元 / d

运行费用合计 0. 20 万元 / d

运行费用 0. 17
 

元 / m3

水池改造为排泥池,沉淀池排泥水和滤池反冲洗水

通过“高效沉淀浓缩+叠螺 / 带式压滤脱水”工艺处

理后,有效地去除水体的中的 SS,最终出水 SS 质量

浓度≤30
 

mg / L,SS 去除率高达 99%,达到水质净化

的目的,浓缩后的泥渣含水率为 97. 5%左右。
2)通过叠螺式压滤机脱水后含水率可降至

75%以下,带式压滤机脱水后含水率降至 72%以下,
污泥减量率达 85%以上,污泥体积减少,方便后续

污泥处置。
3)叠螺脱水机用于水厂排泥水泥渣脱水时,由

于泥渣含砂量较高,设备磨损造成性能下降较快,而
带式压滤机性能相对稳定。
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