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Abstract [ Objective] The performance of conventional nanofiltration ( NF) membranes remains fundamentally constrained by the
intrinsic trade-off between selectivity and permeability, representing a major limitation for advanced separation applications. To break
through this performance bottleneck, researchers introduced nanomaterials in the preparation process of thin-film composites ( TFC)
and developed a series of thin-film nanocomposites ( TFN). This type of membrane effectively regulates the physical and chemical
properties of the membrane surface through the embedding of nanomaterials, thereby enhancing the overall separation performance of
the membrane. [ Methods] However, there were numerous types of nanomaterials, and the complex coupling relationship between the
diverse characteristics of nanomaterial properties and membrane structure parameters poses challenges to the rational design of
multifunctional TFN membranes. To this end, this study introduced machine learning method, comprehensively considering the
influence of nanomaterial properties and membrane structure parameters on membrane separation performance, and constructed a multi-
output machine learning model that could simultaneously predict membrane flux and rejection rate. [ Results]  Through the analysis of
model interpretability, the key determinants influencing the membrane separation performance of TFN were revealed, and the structure-
activity relationship among the properties of nanomaterials, membrane structure parameters and separation performance was clarified.

On this basis, in addition, the trade-off relationship between " selectivity and permeability" was optimized based on the particle swarm

optimization (PSO) algorithm. Based on the key factors affecting performance and combined with the multivariate analysis method, the
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optimization design strategy of TFN membrane was proposed. [ Conclusion ]

This paper offers theoretical insights and a data-driven

framework for the design of high-performance nanofiltration membranes.

Keywords nanomaterial NF membrane membrane separation performance machine learning optimized design
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Fig. 1 Workflow of Influencing Factors for Exploration of TFN Membranes
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