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Prediction of Key Water Qualities for Rivers Based on Classical Machine Learning Models
LU Ting* , XUE Qiong, MIN Xinghua, JIN Zhe
( Nanjing Academy of Ecological and Environmental Protection Science, Nanjing 210019, China)

Abstract In recent years, the problem of water body pollution has become increasingly prominent, and causing enormous pressure on
the river environment. Therefore, the problem of river water environment damage urgently needs to be solved. Machine learning is a
water quality prediction and warning method based on a large amount of monitoring data, which is a new approach to river management.
[ Objective] This paper aimed to explore differences in the predictive ability of different models for different water quality indices.
[ Methods] This experiment took a river section in the middle and lower Yangtze Valley Plain as an example. First, main water
quality influencing factors were selected through significance analysis and principal component analysis. Then, neural network models,
namely, support vector machine (SVM), long-term and short-term memory network (LSTM), gated cycle unit (GRU), and time
convolution network (TCN) were selected according to the automatic monitoring station datas to simulate the levels of water qualities
nitrogen and DO. [ Results] Ammonia nitrogen and dissolved oxygen (DO) were selected as the main influencing factors. And the
accuracy of the four models in simulating ammonia nitrogen was higher than that of DO. [ Conclusion] GRU model has the most
advantages in simulating the two indices. SVM models have relative advantages in simulating ammonia nitrogen and DO water quality,
respectively, while TCN model has relatively weak predictive ability for ammonia nitrogen and DO.
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Fig. 1  Monitoring Values of Water Quality Indices for Section A of River J from January to December in 2020
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