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任园园,邝慧聪,刘志标∗,陈砚朦,徐淑暖
(东莞市疾病预防控制中心<东莞市卫生监督所>,广东东莞　 523000)

摘　 要　 【目的】　 本文建立了一种超高效液相色谱-串联质谱法( UPLC-MS / MS),用于快速测定生活饮用水和水源水中 19
种全氟和多氟化合物(PFASs)。 【方法】　 试验采用 UPLC-MS / MS 技术,对水样进行快速直接分析。 前处理方法极为简单,仅
采用 0. 22

 

μm 再生纤维针式过滤器过滤,省略了传统固相萃取的活化、上样、淋洗和洗脱等繁琐步骤,大幅节约了有机溶剂与

样品处理时间。 目标物经 C18 色谱柱分离后在电喷雾离子源(ESI)负离子模式下电离,采用多反应监测模式( MRM)进行定性

和定量分析检测。 【结果】　 19 种 PFASs 在 3~ 100
 

ng / L 质量浓度内线性良好,相关系数( r)均大于 0. 995,方法检出限(MDL)
为 3

 

ng / L,定量限(MQL)为 10
 

ng / L。 在不同水样中进行 19 种 PFASs 低、中、高浓度加标试验,结果表明:纯水基质回收率为

84. 1% ~ 125. 4%,相对标准偏差(RSD)为 1. 3% ~ 10.
 

0%
 

(n= 6);水源水回收率为 71. 1% ~ 119. 3%,RSD 为
 

1. 2% ~ 8. 3%(n=
6);出厂水回收率为 73. 8% ~ 118. 1%,RSD 为 1. 1% ~ 7. 8% (n= 6);末梢水回收率为 72. 2% ~ 122. 3%,RSD 为

 

0. 6% ~ 9. 5%
(n= 6),均满足测试要求。 【结论】　 相较于常规固相萃取方法,该方法具有低成本、高效率、绿色环保的优势,不仅适用于大

批量生活饮用水及水源水样品中 PFASs 污染程度的快速筛查和长期监测,还可为突发性水污染事件的应急检测提供技术

参考。
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Abstract　 [Objective] 　 A
 

ultra-high
 

performance
 

liquid
 

chromatography-tandem
 

mass
 

spectrometry
 

( UPLC-MS / MS)
 

method
  

is
 

developed
 

for
 

the
 

simultaneous
 

determination
 

of
 

19
 

perfluoroalkyl
 

and
 

polyfluoroalkyl
 

substances
 

(PFASs)
 

in
 

source
 

water
 

and
 

drinking
 

water. [Methods] 　 The
 

experiment
 

employed
 

UPLC-MS / MS
 

technology
 

for
 

rapid
 

and
 

direct
 

analysis
 

of
 

water
 

samples.
 

Sample
 

pretreatment
 

method
  

was
 

extremely
 

simple,
 

merely
 

0. 22
 

μm
 

regenerated
 

cellulose
 

syringe
 

filter
 

membrane
 

was
 

used.
 

Compared
 

to
 

traditional
 

solid-phase
 

extraction,
 

this
 

method
  

omitted
 

tedious
 

steps
 

such
 

as
 

activation,
 

loading,
 

washing,
 

and
 

elution,
 

significantly
 

reducing
 

the
 

organic
 

solvent
 

consumption
 

and
 

operation
 

time.
 

Separation
 

was
 

performed
 

on
 

a
 

C18
 column

 

and
 

detection
 

was
 

carried
 

out
 

in
 

the
 

negative
 

ion
 

mode
 

using
 

electrospray
 

ionization
 

(ESI)
 

source
 

with
 

muliple
 

reaction
 

monitoring
 

mode
 

(MRM)
 

for
 

qualitative
 

and
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quantitative
 

determination. [Results]　 The
 

19
 

PFASs
 

exhibited
 

good
 

linearity
 

in
 

the
 

mass
 

concentration
 

range
 

of
 

3-100
 

ng / L,
 

with
 

correlation
 

coefficients
 

( r)
 

all
 

greater
 

than
 

0. 995.
 

The
 

method
  

detection
 

limit
 

(MDL)
 

and
 

method
 

quantification
 

limit
 

(MQL)
 

were
 

3
 

ng / L
 

and
 

10
 

ng / L.
 

Spike
 

recovery
 

experiments
 

for
 

19
 

PFASs
 

conducted
 

at
 

low,
 

medium,
 

and
 

high
 

concentration
 

levels
 

in
 

different
 

water
 

matrices
 

yielded
 

the
 

following
 

result
 

:for
 

pure
 

water,
 

recoveries
 

ranged
 

from
 

84. 1%
 

to
 

125. 4%
 

with
 

relative
 

standard
 

deviations
 

(n= 6)
 

of
 

1. 3%-10. 0%;
 

for
 

source
 

water,
 

recoveries
 

ranged
 

from
 

71. 1%
 

to
 

119. 3%
 

with
 

RSD
 

of
 

1. 2%-8. 3%
 

(n= 6);
 

for
 

finished
 

water,
 

recoveries
 

ranged
 

from
 

73. 8%
 

to
 

118. 1%
 

with
 

RSD
 

of
 

1. 1%-7. 8%
 

(n= 6);
 

and
 

for
 

tap
 

water,
 

recoveries
 

fell
 

within
 

72. 2%-
122. 3%

 

with
 

RSD
 

ranging
 

from
 

0. 6%
 

to
 

9. 5%
 

(n= 6 );,
 

satisfying
 

the
 

test
 

requirements. [ Conclusion] 　 Compared
 

with
 

conventional
 

solid-phase
 

extraction
 

method,
 

this
 

approach
 

demonstrates
 

advantages
 

of
 

lower
 

cost,
 

higher
 

efficiency
 

and
 

environmental
 

friendliness.
 

It
 

is
 

not
 

only
 

suitable
 

for
 

the
 

rapid
 

screening
 

and
 

long-term
 

monitoring
 

of
 

PFASs
 

contamination
 

in
 

large
 

batches
 

of
 

domestic
 

drinking
 

water
 

and
 

source
 

water
 

samples,
 

but
 

also
 

provides
 

technical
 

references
 

for
 

emergency
 

detection
 

of
 

sudden
 

water
 

pollution
 

incidents.
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　 　 全氟和多氟化合物(PFASs)作为一类新型的持

久性有机污染物,近年来已成为环境科学及公共卫

生界的重点研究课题。 该类物质独特的 C—F 键化

学结构赋予了其高热稳定性、化学惰性、表面活性和

疏水疏油性等一系列特殊理化性质,使其被广泛应

用在纺织、消防、日用洗涤剂、皮革、炊具制造等行业

中[1] ,与人类日常生活紧密交织。 PFASs 具有远距

离迁移能力,在环境中表现出高度持久性和显著生

物蓄积性,可以通过地表径流的携带与前体物质的

转化等途径进入水源,从而造成饮用水污染,亦可经

呼吸系统吸入、皮肤暴露以及消化道摄入进入人

体[2] 。 毒理学研究[3-4] 表明:PFASs 可诱发多维度

健康风险,包括肝脏毒性、免疫毒性、生殖毒性、神经

毒性、内分泌毒性以及潜在致癌性等,且在生物体内

几乎难以被代谢排出。
近年,在全球环境介质与生物样本中相继检测

出 PFASs[5-6] ,其中,水体是其在环境赋存的主要载

体之一。 国内外诸多研究[7-12] 报道了在地表水、地
下水及自来水中检测到 PFASs。 金梦等[7]在长三角地

表水中检出全氟辛酸(PFOA)(4. 49~517. 00
 

ng / L)、全
氟己酸( PFHxA) (0. 92 ~ 688. 00

 

ng / L)和全氟己烷

磺酸(PFHxS)(0. 51 ~ 260. 00
 

ng / L)为主要污染物。
此前,温馨[8]对我国 17 个重点流域和 7 个重点地区

的研究同样发现这 3 种 PFASs 普遍存在,其中水源

水中 PFOA 质量浓度在枯水期达 268
 

ng / L,丰水期

高达 748
 

ng / L。 经过处理后,末梢水中 PFOA 质量

浓度仍维持在较高水平(枯水期为 81. 6
 

ng / L,丰水

期为 226
 

ng / L)。 此外,全氟丁烷磺酸(PFBS)、全氟

辛烷磺酸 ( PFOS) 和全氟戊酸 ( PFPeA ) 等其他

PFASs 也普遍检出。 面对如此复杂的污染现状,
各国和地区纷纷制定了严格的饮用水健康指导

值 [ 13] 。 然而,传统固相萃取-液相色谱串联质谱

检测技术 [ 14-17] 在应对日益严格的监管要求时暴

露出诸多不足:耗材成本高,步骤繁琐、耗时长,
且在样品富集过程中易引入污染,影响检测结果

的准确性与可靠性,限制了监测效率,尤其在基

层实验室日常监测中难以普及。 此外,多数方法

的超高灵敏度设计已超出实际监管需求,造成资

源浪费。
我国《生活饮用水卫生标准》(GB

 

5749—2022)
中,首 次 对 PFOS 和 PFOA 设 定 限 值, 分 别 为

40
 

ng / L 和 80
 

ng / L[18] 。 基于此限值,本研究建立了

一种超高效液相色谱-串联质谱( UPLC-MS / MS)快

速测定生活饮用水和水源水中 19 种 PFASs 的方

法,在免富集条件下实现 3
 

ng / L 的检出限,接近国

标的最低检测浓度[19] ,满足现行监管标准要求的同

时,将应急响应时效提升至传统方法的 10 倍以上,
该方法不仅可用于生活饮用水及水源水污染程度的

初步评估,还可为突发性水污染事件的应急检测提

供技术参考。 此外,本研究探索出的创新性技术路

径与研究策略对其他新型持久性有机污染物的检测

具有一定的启发意义。
1　 试验部分

1. 1　 仪器

　 　 超高效液相色谱三重四极杆质谱仪( Waters
 

Acquity
 

UPLC
 

I-CLASS / Xevo
 

TQ-XS,美国 Waters 公

司);超纯水机(MilliQ,美国 Millipore 公司)。

—081—

任园园,邝慧聪,刘志标,等.
超高效液相色谱-串联质谱法快速测定水中 19 种全氟和多氟化合物

　
Vol. 45,No. 1,2026



1. 2　 标准品和试剂耗材

1. 2. 1　 试剂耗材

　 　 甲醇(质谱纯)、乙腈(质谱纯),乙酸铵(色谱

纯),以上试剂均购于德国 Merck 公司;15
 

mL 离心

管(聚丙烯材质),2
 

mL 螺口样品瓶,药用一次性注

射器, 再生纤维针式过滤器, 孔径为 0. 22
 

μm,
500

 

mL 棕色玻璃瓶采样瓶。
1. 2. 2　 标准物质

　 　 PFASs 标准混标(1ST031052-50M&1ST015095-

50M,
 

50
 

μg / mL,
 

±5%)购于天津阿尔塔科技有限

公司;PFASs 内标混标(MPFAC-C-ES,
 

2
 

000
 

ng / mL,
 

±5%)购自加拿大威灵顿公司。 本研究所用内标:
全氟戊酸内标( 13C5-PFPeA)、全氟辛酸内标( 13C8-
PFOA)、全氟己烷磺酸内标( 13C3-PFHxS)、全氟癸酸

内标 ( 13C6-PFDA )、 全 氟 辛 烷 磺 酸 内 标 ( 13C8-
PFOS)、全氟十一酸内标( 13C7-PFUdA)、全氟十二酸

内标 (13C2-PFDoA) 及 全 氟 十 四 烷 酸 内 标 (13C2-
PFTeDA),共 8 种。 PFASs 标准物质信息如表 1 所示。

表 1　 本试验中化合物种类
Tab. 1　 Types

 

of
 

Compounds
 

in
 

the
 

Experiment

化合物 分子式 缩略语 化学物质登陆(CAS)号

全氟戊酸 C5 HF9 O2 PFPeA 2706-90-3

全氟庚酸 C7 HF13 O2 PFHpA 375-85-9

全氟辛酸 C8 HF15 O2 PFOA 335-67-1

全氟壬酸 C9 HF17 O2 PFNA 375-95-1

全氟癸酸 C10 HF19 O2 PFDA 335-76-2

全氟十一酸 C11 HF21 O2 PFUdA 2058-94-8

全氟十二酸 C12 HF23 O2 PFDoA 307-55-1

全氟十三酸 C13 HF25 O2 PFTrDA 72629-94-8

全氟十四烷酸 C14 HF27 O2 PFTeDA 376-06-7

全氟丁烷磺酸 C4 HF9 O3 S PFBS 375-73-5

全氟戊烷磺酸 C5 HF11 O3 S PFPeS 2706-91-4

全氟己烷磺酸 C6 HF13 O3 S PFHxS 355-46-4

全氟庚烷磺酸 C7 HF15 O3 S PFHpS 375-92-8

全氟壬烷磺酸 C9 HF19 O3 S PFNS 68259-12-1

全氟辛烷磺酸 C8 HF17 O3 S PFOS 1763-23-1

全氟癸烷磺酸 C10 F21 O3 S PFDS 335-77-3

6 ∶ 2 氯代多氟烷基醚磺酸 C8 HClF16 O4 S 6 / 2F-53B 756426-58-1

8 ∶ 2 氯代多氟烷基醚磺酸 C10 HClF20 O4 S 8 / 2F-53B 763051-92-9

4. 8-二氧杂-3H-全氟壬酸 C7 H2 F12 O4 DONA 919005-14-4

1. 3　 标准曲线绘制

　 　 用甲醇将 PFASs 标准溶液稀释成 1
 

000
 

μg / L
的混合标准中间液,再逐级稀释得混合标准使用液,
质量浓度分别为 10

 

μg / L 和 1
 

μg / L,在棕色瓶中冷

冻保存,使用时充分振荡。
用甲醇将 PFASs 内标标准溶液稀释成 200

 

μg / L
的内标混合标准中间液,再稀释配制得内标混合标

准使用液,质量浓度为 1
 

μg / L,在棕色瓶中冷冻保

存,使用时充分振荡。

用甲醇水溶液(1 ∶ 1) 配制成 3、5、10、20、40、
80、 100

 

ng / L 标准系列溶液, 内标质量浓度为

20
 

ng / L。
1. 4　 样品前处理

　 　 将待测水样振荡 2
 

min,准确移取 2. 5
 

mL 水样

于聚丙烯离心管中,再加入 2. 5
 

mL 甲醇及 100
 

μL
内标物(1. 0

 

μg / L) 后振荡,用针式过滤器过滤,将
前 0. 5

 

mL 水样排出弃去后用样品瓶接收,上机

分析。
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1. 5　 仪器条件

1. 5. 1　 色谱条件

　 　 色谱柱为 ACQUITY
 

UPLC 􀅺 BEH
 

C18
 

1. 7
 

μm,
2. 1

 

mm × 100
 

mm ( 美 国 Waters 公 司, 货 号 为

18002352)。 捕集柱:2. 1
 

mm × 50
 

mm(美国 Waters
公司,货号为 18004476)。 柱温设为 35

 

℃ ,进样体

积为 20
 

μL,流动相由乙腈(流动相 A)和 2
 

mmol / L
乙酸 铵 水 溶 液 ( 流 动 相 B ) 组 成, 流 速 为

0. 35
 

mL / min;流动相梯度洗脱方法如表 2 所示。
1. 5. 2　 质谱条件

　 　 电离模式为电喷雾电离负离子模式(ESI-);扫
描模式为多反应监测(MRM);离子源温度为 600

 

℃;
毛细管电压为 0. 5

 

kV;脱溶剂流量为 1
 

000
 

L / h,
　 　 　

锥孔气流量为 150
 

L / h。 19 种 PFASs 及 8 种内标的

保留时间及质谱参数如表 3 所示。
表 2　 流动相梯度洗脱方法

Tab. 2　 Elution
 

Method
 

of
 

Mobile
 

Phase
 

Gradient
时间 / min A B

0 10% 90%

0. 5 10% 90%

3. 0 30% 70%

5. 0 45% 55%

10. 0 80% 20%

10. 5 95% 5%

14. 0 95% 5%

15. 0 10% 90%

16. 0 10% 90%

表 3　 目标物的保留时间及质谱参数
Tab. 3　 Mass

 

Spectrometer
 

Parameters
 

and
 

Retention
 

Time
 

of
 

Target
 

Compounds
化合物 保留时间 / min 母离子(m / z) 子离子(m / z) 裂解电压 / V 碰撞能量 / eV 内标

PFPeA 4. 29 263. 1 219. 0∗ 10 8 13 C5 -PFPeA

PFBS 5. 26 299. 1 79. 8∗ ,98. 8 10 27,27 13 C8 -PFOS

PFHpA 5. 78 363. 1 319. 1∗ ,169. 0 10 9,17 13 C8 -PFOA

DONA 6. 00 377. 1 251. 1∗ ,84. 8 15 12,20 13 C8 -PFOA

PFPeS 6. 03 349. 1 98. 8∗ ,79. 8 25 30,30 13 C8 -PFOS

PFOA 6. 39 413. 1 369. 1∗ ,168. 9 15 9,8 13 C8 -PFOA

PFHxS 6. 69 399. 1 98. 8∗ ,79. 8 10 35,30 13 C3 -PFHxS

PFNA 6. 98 463. 1 419. 1∗ ,219. 1 15 10,16 13 C8 -PFOA

PFHpS 7. 31 449. 1 79. 8∗ ,98. 8 10 40,35 13 C8 -PFOS

PFDA 7. 56 513. 1 469. 1∗ ,219. 0 15 11,18 13 C6 -PFDA

PFOS 7. 93 499. 1 98. 8∗ ,79. 8 10 40,45 13 C8 -PFOS

PFUdA 8. 16 563. 1 519. 1∗ ,269. 1 15 11,18 13 C7 -PFUdA

6 / 2F-53B 8. 36 531. 1 351. 1∗ ,82. 8 20 25,25 13 C8 -PFOS

PFNS 8. 53 549. 1 98. 8∗ ,79. 8 17 45,48 13 C8 -PFOS

PFDoA 8. 75 613. 1 569. 1∗ ,169. 0 20 16,26 13 C2 -PFDoA

PFDS 9. 12 599. 1 98. 8∗ ,79. 8 15 45,50 13 C8 -PFOS

PFTrDA 9. 33 663. 1 619. 0∗ ,169. 0 20 12,28 13 C2 -PFTeDA

8 / 2F-53B 9. 53 631. 0 451. 1∗ ,82. 8 20 30,30 13 C8 -PFOS

PFTeDA 9. 90 713. 0 669. 0∗ ,169. 0 20 13,28 13 C2 -PFTeDA
13 C5 -PFPeA 4. 28 268. 1 223. 1∗ 15 8 13 C5 -PFPeA
13 C8 -PFOA 6. 39 421. 2 376. 2∗ ,172. 0 15 10,18
13 C3 -PFHxS 6. 69 402. 1 79. 8∗ ,98. 8 20 35,35
13 C6 -PFDA 7. 56 519. 2 474. 2∗ ,223. 1 15 10,18
13 C8 -PFOS 7. 93 507. 1 79. 8∗ ,98. 8 20 45,45

13 C7 -PFUdA 8. 16 570. 0 525. 2∗ ,274. 1 20 12,18
13 C2 -PFDoA 8. 75 615. 1 570. 1∗ ,168. 9 25 26,26

13 C2 -PFTeDA 9. 90 715. 1 670. 1∗ ,168. 9 15 14,30

　 注:∗标注的表示各目标物的定量离子。

—281—

任园园,邝慧聪,刘志标,等.
超高效液相色谱-串联质谱法快速测定水中 19 种全氟和多氟化合物

　
Vol. 45,No. 1,2026



2　 结果讨论
2. 1　 方法优化

2. 1. 1　 样品容器选择

　 　 在采样和试验操作过程中,目标化合物可能

会被盛放器皿(如采样瓶、离心管)吸附,进而在储

存或转移环节中造成损失,影响痕量分析准确性。
研究[20] 表明:玻璃( GL)器皿对 PFASs 具有吸附风

险,建议采用聚丙烯( PP) 器皿,亦有研究[21-22] 指

出:PP 器皿对 PFASs 的吸附程度较 GL 更为显著。
因此,本节围绕采样器皿材料的选择展开相关

研究。

　 注:(a) ~ (c)加标样品质量浓度为 20
 

ng / L;(d) ~ (f)加标样品质量浓度为 100
 

ng / L。

图 1　 PFASs
 

在 GL 与 PP 器皿中回收率随时间变化对比

Fig. 1　 Comparison
 

of
  

Recovery
 

Rates
 

of
 

PFASs
 

in
 

Glass
 

and
 

PP
 

Containers
 

with
 

Time

在对比研究中,以纯水为基质,分别配制 20
 

ng / L
和 100

 

ng / L 的加标样品,每个浓度设置 3 组平行试

验并设置空白对照。 选取 125
 

mL
 

GL 采样瓶与 PP

采样瓶作为试验对象,于 4
 

℃环境下满瓶保存,考察

不同材质器皿随时间变化对目标化合物回收率的影

响。 以高质量浓度(100
 

ng / L)的试验结果为例,如
图 1 所示。 保存 1

 

d 后,疏水性较弱的 PFASs 更容

易吸附在极性的 GL 材质上,疏水性较强的长链羧

酸类化合物 ( PFCAs, C9 ~ C14 ) 及磺酸类化合物

(PFSAs)更容易吸附于 PP 材质,部分化合物的回

收率甚至低于 60%。 随着接触时间变长,目标化合

物在 GL 和 PP
 

2 种材质上的吸附程度均有所增加,
保存 2

 

d 后, GL 采样瓶中各物质的回收率在

84. 5% ~ 111. 0%, 而 PP 采 样 瓶 中 PFTrDA 和

PFTeDA 的回收率已降至约 50%。 保存 4
 

d 后,除
PFHxS 外,其余化合物在 GL 采样瓶中的回收率均

优于 PP 采样瓶。 在低质量浓度(20
 

ng / L)条件下,

—381—

净　 水　 技　 术

WATER
 

PURIFICATION
 

TECHNOLOGY
Vol. 45,No. 1,2026
January

 

25th,
 

2026



GL 瓶和 PP 瓶的对目标物的吸附特性与高质量浓

度(100
 

ng / L)条件下的结果具有相似的趋势。 基于

上述试验结果,PP 作为 PFASs 的试验容器材料并

不比 GL 更合适,该结论与李偲琳等[22] 的研究结果

一致。 因此,在 PFASs 的相关研究中,特别是痕量

分析时,有必要评估试验容器对 PFASs 的吸附程

度,减少试验损失导致的误差。
2. 1. 2　 流动相的选择

　 　 PFASs 多呈现弱酸性,流动相的 pH 对其分离

效果有着显著影响,在流动相的无机相中加入醋

酸盐缓冲溶液,不仅能显著改善色谱峰形,还可提

高检测灵敏度。 基于此,对 3 种不同的流动相进

行了比较,分别是 2
 

mmol / L 的乙酸铵水 -甲醇、
2

 

mmol / L 的乙酸铵水-乙腈和 5
 

mmol / L 的乙酸铵

水-乙腈,并对梯度洗脱程序进行优化,综合考虑

19 种 PFASs 整体出峰峰形和响应值,最终选择的

流动相为 2
 

mmol / L 的乙酸铵水-乙腈,流速选择

0. 35
 

mL / min,以表 1 的梯度洗脱程序进行试验。
优化后的 19 种 PFASs 和 8 种内标的总离子流图如

图 2 所示。

　 注:1—PFPeA;2—PFBS;3—PFHpA;4—DONA;5—PFPeS;6—
PFOA;7—PFHxS; 8—PFNA; 9—PFHpS; 10—PFDA; 11—PFOS;
12—PFUdA;13—6 / 2F-53B;14—PFNS;15—PFDoA;16—PFDS;
17—PFTrDA;18—8 / 2F-53B;19—PFTeDA。

图 2　 19种 PFASs的总离子流图(质量浓度为 80
 

ng / L)
Fig. 2　 Total

 

Ion
 

Current
 

Diagram
 

of
 

19
 

PFASs
 

(with
  

Mass
 

Concentration
 

of
 

80
 

ng / L)

2. 2　 方法评价

2. 2. 1　 线性范围和检出限

　 　 如表 4 所示,19 种 PFASs 在质量浓度为 3 ~
100

 

ng / L 的相关系数( r)为 0. 995
 

8 ~ 0. 999
 

2,符合

定量要求。
表 4　 19 种 PFASs 的线性方程、相关系数、日内精密度和日间精密度

Tab. 4　 Linear
 

Equations,
 

Correlation
 

Coefficients,
 

Intra-Day
 

Precision,
 

Inter-Day
 

Precision
 

for
 

19
 

PFASs

化合物 线性方程 r 日内精密度 日间精密度

PFPeA y= 1. 030
 

26x-0. 315
 

736 0. 999
 

0 4. 0% 2. 7%

PFBS y= 3. 179
 

59x-0. 733
 

155 0. 997
 

7 7. 8% 4. 4%

PFHpA y= 1. 209
 

7x+0. 0
 

697
 

938 0. 998
 

8 2. 5% 4. 0%

DONA y= 2. 929
 

14x-0. 427
 

307 0. 999
 

2 1. 3% 1. 9%

PFPeS y= 1. 832
 

14x-0. 368
 

373 0. 995
 

8 5. 9% 7. 8%

PFOA y= 1. 209
 

54x+0. 232
 

844 0. 998
 

7 3. 6% 4. 1%

PFHxS y= 1. 204
 

8x+0. 127
 

272 0. 999
 

2 8. 8% 8. 6%

PFNA y= 1. 155
 

71x+0. 363
 

6 0. 999
 

3 0. 7% 4. 8%

PFHpS y= 2. 290
 

2x-0. 702
 

974 0. 997
 

9 6. 9% 5. 8%

PFDA y= 1. 469
 

67x+0. 152
 

248 0. 998
 

7 2. 4% 4. 8%

PFOS y= 1. 34
 

383x+0. 0
 

589
 

755 0. 998
 

0 9. 7% 8. 7%

PFUdA y= 1. 05
 

231x+0. 609
 

459 0. 998
 

4 6. 0% 4. 8%

6 / 2F-53B y= 9. 55
 

996x-3. 02
 

737 0. 997
 

4 6. 7% 6. 6%

PFNS y= 1. 13
 

663x-0. 408
 

776 0. 996
 

7 2. 9% 6. 4%

PFDoA y= 6. 46
 

565x+0. 74
 

601 0. 997
 

8 5. 4% 9. 7%

PFDS y= 1. 06
 

101x-0. 165
 

715 0. 997
 

0 5. 9% 5. 9%

PFTrDA y= 1. 47
 

022x+0. 774
 

746 0. 998
 

3 2. 9% 3. 9%

8 / 2F-53B y= 8. 13
 

203x-1. 76
 

241 0. 997
 

8 5. 5% 4. 7%

PFTeDA y= 1. 59
 

374x+1. 31
 

134 0. 998
 

9 2. 2% 5. 8%
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　 　 本方法以信噪比(S / N)≥3 和 S / N≥10 分别确

定方法检出限(MDL)和定量限(MQL)。 结果显示:
水样质量浓度为 3

 

ng / L 时,目标物的 S / N(6. 70 ~
892. 45)均优于 3;水样质量浓度为 10

 

ng / L 时,目标

物的 S / N(29. 51 ~ 2
 

190. 06)均优于 10,在此浓度加

标,7 次测定相对标准偏差(RSD)为 2. 7% ~ 9. 8%,
回收率为 95. 3% ~ 124. 2%。 该方法的 MDL 为

3
 

ng / L,MQL 为 10
 

ng / L。 通过对 10
 

ng / L 的 PFASs
混标工作液在 1

 

d 内及 3
 

d 内重复测定 3 次以考察

仪器对样品日内及日间测量的精密度。 该仪器测定

的日内精密度为 0. 7% ~ 9. 7%, 日间精密度为

1. 9% ~ 9. 7%,均低于 10%,显示出该检测方法具备

良好的重现性。
2. 2. 2　 方法准确度和精密度

　 　 对纯水和实际水样进行加标回收试验以考察

方法准确度及精密度,测试水样未检测出待测物

质。 试验中,向纯水、水源水和生活饮用水(出厂

水、末梢水)中添加 10、20、80
 

ng / L 这 3 个质量浓

度水平的 PFASs,各水样的回收率和精密度如表 5
所示。 数据显示,纯水回收率为 84. 1% ~ 125. 4%,
相对标准偏差( RSD)为 1. 3% ~ 10. 0%

 

( n = 6) ;水
源水回收率为 71. 1% ~ 119. 3%, RSD 为

 

1. 2% ~
8. 3%(n = 6) ;出厂水回收率为 73. 8% ~ 118. 1%,
RSD 为 1. 1% ~ 7. 8% ( n = 6 ) ; 末梢水回收率为

72. 2% ~ 122. 3%,RSD 为 0. 6% ~ 9. 5% ( n = 6) 区

间;实际环境水样的回收率亦表现良好,回收率为

71. 1% ~ 122. 3%。 由此可知,样品仅经滤膜过滤,
PFASs 的回收率较为理想,满足测试要求。 各目标

物的 RSD 为 0. 6% ~ 10. 0%,该方法具有较理想的

稳定性。
表 5　 19 种 PFASs 的回收率及 RSD(n=6)

Tab. 5　 Recovery
 

Rates
 

and
 

RSD
 

for
 

19
 

PFASs(n= 6)

化合物
回收率 RSD

纯水 水源水 出厂水 末梢水 纯水 水源水 出厂水 末梢水

PFPeA 97. 0% ~ 112. 3% 73. 9% ~ 98. 0% 81. 1% ~ 97. 0% 75. 2% ~ 85. 8% 1. 3% ~ 4. 1% 1. 2% ~ 2. 7% 1. 5% ~ 2. 4% 0. 6% ~ 1. 7%

PFBS 97. 9% ~ 105. 8% 110. 6% ~ 119. 3% 100. 4% ~ 118. 1% 97. 1% ~ 122. 3% 5. 2% ~ 8. 4% 2. 5% ~ 5. 1% 1. 1% ~ 2. 8% 3. 2% ~ 4. 6%

PFHpA 97. 3% ~ 113. 0% 72. 5% ~ 93. 0% 82. 2% ~ 91. 9% 77. 8% ~ 89. 7% 2. 5% ~ 6. 3% 1. 9% ~ 6. 1% 2. 5% ~ 3. 1% 3. 3% ~ 4. 2%

DONA 97. 8% ~ 115. 4% 80. 1% ~ 95. 8% 88. 0% ~ 94. 7% 83. 6% ~ 93. 4% 1. 5% ~ 5. 0% 1. 4% ~ 2. 8% 1. 2% ~ 1. 5% 2. 4% ~ 4. 6%

PFPeS 101. 1% ~ 112. 2% 71. 8% ~ 90. 4% 75. 3% ~ 81. 9% 84. 5% ~ 90. 4% 3. 0% ~ 9. 9% 3. 5% ~ 5. 9% 3. 4% ~ 7. 8% 5. 3% ~ 5. 7%

PFOA 98. 1% ~ 116. 0% 73. 1% ~ 101. 6% 77. 6% ~ 96. 0% 75. 2% ~ 96. 8% 2. 8% ~ 3. 6% 3. 0% ~ 3. 5% 2. 4% ~ 3. 9% 4. 1% ~ 4. 8%

PFHxS 96. 5% ~ 109. 8% 71. 2% ~ 86. 3% 76. 2% ~ 87. 4% 72. 6% ~ 86. 9% 3. 0% ~ 4. 8% 3. 1% ~ 4. 9% 3. 7% ~ 4. 8% 3. 5% ~ 4. 3%

PFNA 96. 5% ~ 111. 4% 71. 1% ~ 92. 4% 79. 9% ~ 90. 0% 75. 8% ~ 90. 5% 2. 5% ~ 4. 3% 2. 4% ~ 3. 4% 2. 1% ~ 3. 5% 4. 2% ~ 4. 7%

PFHpS 99. 0% ~ 108. 4% 76. 9% ~ 87. 4% 76. 8% ~ 92. 4% 81. 1% ~ 92. 5% 5. 8% ~ 8. 8% 2. 2% ~ 5. 1% 2. 9% ~ 3. 4% 3. 7% ~ 5. 4%

PFDA 98. 4% ~ 110. 7% 72. 2% ~ 85. 1% 78. 5. % ~ 84. 8% 72. 2% ~ 85. 2% 3. 8% ~ 8. 4% 2. 3% ~ 5. 0% 1. 4% ~ 2. 3% 2. 3% ~ 3. 9%

PFOS 100. 5% ~ 114. 6% 78. 5% ~ 107. 1% 77. 3% ~ 100. 3% 79. 2% ~ 93. 4% 8. 4% ~ 9. 8% 4. 1% ~ 5. 8% 6. 5% ~ 7. 3% 2. 4% ~ 7. 9%

PFUdA 97. 9% ~ 111. 2% 74. 4% ~ 85. 6% 79. 1% ~ 85. 9% 74. 9% ~ 85. 0 4. 6% ~ 7. 2% 2. 3% ~ 6. 4% 4. 0% ~ 4. 6% 3. 1% ~ 8. 2%

6 / 2F-53B 96. 8% ~ 108. 7% 74. 0% ~ 92. 3% 76. 1% ~ 85. 7% 77. 8% ~ 84. 8% 4. 7% ~ 7. 7% 2. 9% ~ 6. 9% 3. 4% ~ 4. 0% 1. 9% ~ 5. . 7%

PFNS 96. 2% ~ 103. 1% 72. 9% ~ 88. 1% 76. 0% ~ 82. 0% 76. 5% ~ 84. 2% 5. 8% ~ 10. 0% 5. 4% ~ 6. 6% 2. 0% ~ 6. 2% 6. 1% ~ 7. 4%

PFDoA 84. 1% ~ 100. 0% 72. 8% ~ 85. 2% 73. 8% ~ 82. 0% 75. 6% ~ 81. 6% 6. 3% ~ 8. 8% 2. 4% ~ 3. 9% 3. 8% ~ 4. 9% 4. 7% ~ 9. 5%

PFDS 97. 6% ~ 107. 4% 72. 4% ~ 90. 2% 75. 1% ~ 82. 3% 74. 3% ~ 81. 6% 3. 5% ~ 8. 2% 3. 0% ~ 4. 6% 4. 3% ~ 6. 1% 4. 2% ~ 5. 1%

PFTrDA 103. 5% ~ 125. 4% 72. 2% ~ 84. 7% 78. 5% ~ 83. 7% 74. 3% ~ 84. 9% 2. 0% ~ 8. 8% 2. 4% ~ 3. 6% 3. 6% ~ 4. 5% 2. 2% ~ 5. 0%

8 / 2F-53B 95. 2% ~ 109. 0% 71. 9% ~ 87. 6% 73. 8% ~ 82. 1% 73. 9% ~ 79. 3% 3. 2% ~ 7. 5% 3. 5% ~ 8. 3% 3. 3% ~ 5. 5% 2. 5% ~ 4. 4%

PFTeDA 98. 4% ~ 120. 9% 71. 9% ~ 81. 4% 77. 1% ~ 80. 9% 73. 6% ~ 88. 2% 2. 2% ~ 6. 8% 2. 3% ~ 6. 0% 3. 6% ~ 4. 2% 2. 8% ~ 6. 2%

2. 3　 实际样品测定

　 　 用该方法对东莞市的水源水和生活饮用水开展

了 PFASs 的监测。 结果表明:67 份水样中 PFASs 均

有不同程度的检出。 水源水,出厂水和末梢水均检

出 PFOA、 PFBS、 PFOS 和 PFPeA,各物质检出率:
PFOA 为 43. 2%, PFBS 为 95. 5%, PFOS 为 17. 8%,
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PFPeA 为 4. 5%。 PFASs 的总质量浓度为 439. 0
 

ng / L。
2. 4　 背景干扰和质量控制

　 　 在痕量 PFASs 的检测工作中,去除背景干扰是

保障测定准确性和灵敏度提升的重要环节。 本研究

通过在流动相混合器和进样器之间安装捕集柱,成
功地消除了流动相和泵带来的背景干扰。

试验过程中避免使用含氟的耗材并使用质谱级

的有机试剂,同时试验前所有器皿使用经验证不含

PFASs 的纯水和甲醇润洗 3 次。
每批样品同时做空白试验和加标试验,评估试

验流程准确性与可靠性。 同时,样品间隔插入空白

和标准样品,前者监测长时间运行下背景污染情况,
后者评估仪器稳定性、方法准确性及误差累积,保证

试验数据的可靠性。
3　 结论
　 　 本研究开发了一种仅采用滤膜过滤即可上机分

析不同水体中的 19 种 PFASs 的 UPLC-MS / MS 方

法。 相较于传统的萃取方法,该方法显著减少了样

品、耗材用量及前处理步骤,提升了工作效率,具有

良好的实用性。 通过一系列试验,考察了不同前处

理条件对目标物回收率的影响和 2 种器皿在不同时

间内对目标物的吸附。 同时,优化了仪器参数,确定

了方法的检出限、定量限。 通过对纯水、水源水、出
厂水和末梢水进行了加标试验,对方法的准确度和

精密度进行系统考察。 结果表明该方法可用于水中

PFASs 的检测。 虽然该方法灵敏度低于固相萃取方

法,但仍然处于较低的检出限水平,是一种快速、可
靠的 PFASs 检测方法,尤其适用于生活饮用水和水

源水中 PFASs 污染水平的快速筛查。

参考文献

[ 1 ]　 赵源,
 

杨红菊,
 

温雅君,
 

等.
 

京郊典型河流农用水中全氟化

合物赋存特征、源解析及生态风险评估[ J] .
 

农业资源与环

境学报,
 

2024,
 

41(2):
 

392-400.

ZHAO
 

Y,
 

YANG
 

H
 

J,
 

WEN
 

Y
 

J,
 

et
 

al.
 

Characteristics,
 

sources,
 

and
 

risk
 

assessment
 

of
 

perfluorinated
 

compounds
 

inagricultural
 

water
 

of
 

typical
 

rivers
 

in
 

suburban
 

Beijing [ J] .
 

Journal
 

of
 

Agricultural
 

Resources
 

and
 

Environment,
 

2024,
 

41

(2):
 

392-400.

[ 2 ] 　 温馨,
 

吕佳,
 

王园媛,
 

等.
 

常规处理工艺对饮用水中全氟化

合物的去除效果研究[ J] .
 

环境卫生学杂志,
 

2022,
 

12( 7):
 

526-532.

WEN
 

X,
 

LÜ
 

J,
 

WANG
 

Y
 

Y,
 

et
 

al.
 

Removal
 

efficiency
 

of
 

perfluorinated
 

compounds
 

in
 

drinking
 

water
 

by
 

conventional
 

treatment
 

process[J] .
 

Journal
 

of
 

Environmental
 

Hygiene,
 

2022,
 

12(7):
 

526-532.
[ 3 ] 　 汪子夏,

 

姚谦,
 

田英.
 

全氟化合物对性激素干扰作用的研究

进展[J] .
 

上海交通大学学报(医学版),
 

2021,
 

41(4):
 

540-

545.
WANG

 

Z
 

X,
 

YAO
 

Q,
 

TIAN
 

Y.
 

Advance
 

in
 

research
 

of
 

interference
 

effect
 

of
 

perfluorinated
 

compounds
 

on
 

sexhormones
[ J ] .

 

Journal
 

of
 

Shanghai
 

Jiao
 

Tong
 

University
 

( Medical
 

Science),
 

2021,
 

41(4):
 

540-545.
[ 4 ] 　 朱永乐,

 

汤家喜,
 

李梦雪,等.
 

全氟化合物污染现状及与有

机污染物联合毒性研究进展[ J] .
 

生态毒理学报,
 

2021,
 

16
(2):

 

86-99.
ZHU

 

Y
 

L,
 

TANG
 

J
 

X,
 

LI
 

M
 

X,
 

et
 

a1.
 

Contamination
 

status
 

of
 

perfluorinated
 

compounds
 

and
 

its
 

combined
 

effects
 

with
 

organic
 

pollutants[J] .
 

Asian
 

Journal
 

of
 

Ecotoxicology,
 

2021, 16 ( 2):
 

86-99.
[ 5 ] 　 李兵,

 

马浩天,
 

贾克明,
 

等.
 

全氟化合物的污染现状及分析方

法研究进展[J].
 

中国法医学杂志,
 

2022,
 

125(6):
 

48-56.
LI

 

B,
 

MA
 

H
 

T,
 

JIA
 

K
 

M,
 

et
 

al.
 

The
 

research
 

progress
 

on
 

the
 

pollution
 

status
 

and
 

analytical
 

methods
 

of
 

perfluoroalkyl
 

substances[J] .
 

Chinese
 

Journal
 

of
 

Forensic
 

Sciences,
 

2022,
 

125
(6):

 

48-56.
[ 6 ] 　 宋彦敏,

 

周连宁,
 

郝文龙.
 

全氟化合物的污染现状及国内外

研究进展[J] .
 

环境工程,
 

2017,
 

25(10):
 

82-86.
SONG

 

Y
 

M,
 

ZHOU
 

L
 

N,
 

HAO
 

W
 

L.
 

Pollution
 

status
 

and
 

related
 

research
 

progress
 

of
 

perflourinated
 

compunds[ J] .
 

Environmental
 

Engineering,
 

2017,
 

25(10):
 

82-86.
[ 7 ] 　 金梦,

 

刘丽君,
 

赵波,
 

等.
 

长三角地区水体中全氟化合物的污

染特征及风险评价[J].
 

环境化学,
 

2023,
 

42(7):
 

2153-2162.
JIN

 

M,
 

LIU
 

L
 

J,
 

ZHAO
 

B,
 

et
 

al.
 

Pollution
 

characteristics
 

and
 

risk
 

assessment
 

of
 

perfluoroalkyl
 

substances
 

in
 

surface
 

water
 

from
 

Yangtze
 

River
 

Delta [ J] .
 

Environmental
 

Chemistry,
 

2023,
 

42
(7):

 

2153-2162.
[ 8 ] 　 温馨.

 

我国重点流域和重点地区饮用水中全氟化合物污染水

平调查研究[D].
 

北京:
 

中国疾病预防控制中心,
 

2020.
WEN

 

X.
 

Investigation
 

on
 

the
 

pollution
 

level
 

of
 

perfluorinated
 

compounds
 

in
 

drinking
 

water
 

in
 

key
 

river
 

basins
 

and
 

regions
 

in
 

China[ D ].
 

Beijing:
 

Chinese
 

Center
 

for
 

Disease
 

Control
 

and
 

Prevention,
 

2020.
[ 9 ] 　 黄家浩,

 

陶艳茹,
 

黄天寅,
 

等.
 

洪泽湖水体全氟化合物的污

染特征、来源及健康风险[J] .
 

环境科学研究,
 

2023,
 

36(4):
 

263-276.
HUANG

 

J
 

H,
 

TAO
 

Y
 

R,
 

HUANG
 

T
 

Y,
 

et
 

al.
 

Occurrence,
 

sources
 

and
 

health
 

risk
 

assessment
 

of
 

per-
 

and
 

polyfluoroalkyl
 

substances
 

in
 

surface
 

water
 

of
 

Hongze
 

Lake [ J] .
 

Research
 

of
 

Environmental
 

Sciences,
 

2023,
 

36(4):
 

263-276.
[10] 　 DVORAKOVA

 

D,
 

JURIKOVA
 

M,
 

SVOBODOVA
 

V,
 

et
 

al.
 

Complex
 

monitoring
 

of
 

perfluoroalkyl
 

substances
 

( PFAS)
 

from
 

—681—

任园园,邝慧聪,刘志标,等.
超高效液相色谱-串联质谱法快速测定水中 19 种全氟和多氟化合物

　
Vol. 45,No. 1,2026



tap
 

drinking
 

water
 

in
 

the
 

Czech
 

Republic[ J] .
 

Water
 

Research,
 

2023,
 

247:
 

120764.
 

DOI:
 

10. 1016 / j. watres. 2023. 120764.
[11] 　 SIKORA

 

D,
 

PONIEDZIATEK
 

B,
 

RZYMSKI
 

P.
 

Assessmentof
 

PFAS
 

levels
 

in
 

drinking
 

water:
 

A
 

case
 

study
 

from
 

Poznań
 

County
( Poland ) [ J ] .

 

Chemosphere,
 

2025,
 

377:
 

144326.
 

DOI:
 

10. 1016 / j. chemosphere. 2025. 144326.
[12] 　 INGOLD

 

V,
 

KÄMPFE
 

A,
 

RUHL
 

A
 

S.
 

Screening
 

for
 

26
 

per-and
 

polyfluoroalkyl
 

substances
 

( PFAS)
 

in
 

German
 

drinking
 

waters
 

with
 

support
 

of
 

residents[J] .
 

Eco-Environment
 

&
 

Health,
 

2023,
 

2:
 

235-242.
 

DOI:
 

10. 1016 / j. eehl. 2023. 08. 004.
[13] 　 TEYMOORIAN

 

T,
 

MUNOZ
 

G,
 

DUY
 

S
 

V,
 

et
 

al.
 

Tracking
 

PFAS
 

in
 

drinking
 

water:
 

A
 

review
 

of
 

analytical
 

methods
 

and
 

worldwide
 

occurrence
 

trends
 

in
 

tap
 

water
 

and
 

bottled
 

water [ J] .
 

Water,
 

2023,
 

3:
 

246-261.
 

DOI:
 

10. 1021 / acsestwater. 2c00387.
[14] 　 王懿,

 

孔德洋,
 

单正军.
 

等.
 

超高效液相色谱串联质谱法对

水体中全氟化合物的测定[ J] .
 

安全与环境学报,
 

2011,
 

11
(6):

 

88-92.
WANG

 

Y,
 

KONG
 

D
 

Y,
 

SHAN
 

Z
 

J,
 

et
 

al.
 

Determining
 

the
 

perfluorinated
 

compounds
 

in
 

water
 

samples
 

by
 

ultra
 

performance
 

liquid
 

chromatography
 

tandem
 

mass
 

spectrometry[ J] .
 

Journal
 

of
 

Safety
 

and
 

Environment,
 

2011,
 

11(6):
 

88-92.
[15] 　 刘田,

 

周宇齐,
 

宋洲,
 

等.
 

全自动固相萃取-UPLC-MS / MS 法

测定水中 17 种全氟化合物[ J] .
 

化学研究与应用,
 

2025,
 

37
(2):

 

410-418.
LIU

 

T,
 

ZHOU
 

Y
 

Q,
 

SONG
 

Z,
 

et
 

al.
 

Determination
 

of
 

17
 

perfluorinated
 

compounds
 

in
 

water
 

by
 

fully-automated
 

SPE-
UPLC-MS / MS[J] .

 

Chemical
 

Research
 

and
 

Application,
 

2025,
 

37(2):
 

410-418.
[16] 　 邬晶晶,

 

桂萍,
 

郭风巧.
 

固相萃取-UPLC-MS / MS 法测定水

中 17 种全氟化合物[J] .
 

中国给水排水,
 

28(12):
 

28-36.
WU

 

J
 

J,
 

GUI
 

P,
 

GUO
 

F
 

Q.
 

SPE-UPLC-MS / MS
 

for
 

determination
 

of
 

17
 

PFCs
 

in
 

water [ J ] .
 

Chian
 

Water
 

&
 

Wastewater,
 

28(12):
 

28-36.
[17] 　 张琪雨,

 

吴艳龙,
 

张祥汉,
 

等.
 

固相萃取-高效液相色谱-串

联质谱法测定生活饮用水中
 

11
 

种全氟化合物的方法探究及

应用[J] .
 

净水技术,
 

2024,
 

43(s2):
 

246-251,
 

307.
ZHANG

 

Q
 

Y,
 

WU
 

Y
 

L,
 

ZHANG
 

X
 

H,
 

et
 

al.
 

Exploration
 

and
 

application
 

of
 

11
 

determination
 

perfluorinated
 

compounds
 

in
 

domestic
 

drinking
 

water
 

using
 

solid-phase
 

extraction
 

ultra-high
 

performance
 

liquid
 

chromatography
 

tandem
 

mass
 

spectrometry[J].
 

Water
 

Purification
 

Technology,
 

2024,
 

43(s2):
 

246-251,
 

307.
[18] 　 中华人民共和国国家市场监督管理总局,

 

中国国家标准化管

理委员会.
 

生活饮用水卫生标准:
 

GB / T
 

5749—2022[S].
 

北

京:
 

中国标准出版社,
 

2022.
State

 

Administration
 

for
 

Market
 

Regulation
 

of
 

the
 

People ' s
 

Republic
 

of
 

China,
 

Standardization
 

Administration
 

of
 

China.
 

Standards
 

for
 

drinking
 

water
 

quality:
 

GB
 

5749—2022 [ S ].
 

Beijing:
 

Standards
 

Press
 

of
 

China,
 

2022.
[19] 　 中华人民共和国国家市场监督管理总局,

 

中国国家标准化管

理委员会.
 

生活饮用水标准检验方法
 

第
 

8
 

部分
 

有机物指

标:
 

GB / T
 

5750. 8—2023[S].
 

北京:
 

中国标准出版社,
 

2023.
State

 

Administration
 

for
 

Market
 

Regulation
 

of
 

the
 

People ' s
 

Republic
 

of
 

China,
 

Standardization
 

Administration
 

of
 

China.
 

Standard
 

examination
 

methods
 

for
 

drinking
 

water—Part
 

8
 

Organic
 

indicies
 

:
 

GB / T
 

5750. 8—2023[S].
 

Beijing:
 

Standards
 

Press
 

of
 

China,
 

2023.
[20] 　 赵陈晨,

 

陈勇,
 

侯晓玲,
 

等.
 

在线固相萃取-液相色谱-串联

质谱法直接测定水中 15 种全氟烷基化合物[J] .
 

中国环境监

测,
 

2024,
 

40(2):
 

185-197.
ZHAO

 

C
 

C,
 

CHEN
 

Y,
 

HOU
 

X
 

L,
 

et
 

al.
 

Direct
 

determination
 

of
 

15
 

kinds
 

of
 

perfluoroalkyl
 

substances
 

in
 

water
 

by
 

liquid
 

chromatography-tandem
 

mass
 

spectrometry
 

coupled
 

with
 

online
 

solid
 

phase
 

extraction[ J] .
 

Environmental
 

Monitoring
 

in
 

China,
 

2024,
 

40(2):
 

185-197.
[21] 　 陈星,

 

刘朝阳,
 

宋昕.
 

新污染物 PFOS 痕量级测定中的影响

因素及优化[J] .
 

环境工程学报,
 

2021,
 

15(6):
 

2143-2154.
CHEN

 

X,
 

LIU
 

Z
 

Y,
 

SONG
 

X.
 

Factors
 

affecting
 

and
 

modification
 

of
 

the
 

laboratory
 

analysis
 

of
 

PFOS [ J ] .
 

Chinese
 

Journal
 

of
 

Environmental
 

Engineering,
 

2021,
 

15(6):
 

2143-2154.
[22] 　 李偲琳,

 

杨愿愿,
 

刘思思,
 

等.
 

器皿材料对水中全氟化合物

的吸附特征研究[ J] .
 

华南师范大学学报( 自然科学版),
 

2023,
 

55(3):
 

46-54.
LI

 

C
 

L,
 

YANG
 

Y
 

Y,
 

LIU
 

S
 

S,
 

et
 

al.
 

Adsorption
 

of
 

perfluoroalkyl
 

substances
 

in
 

aqueous
 

solution
 

by
 

containers
 

made
 

from
 

different
 

materials[J] .
 

Journal
 

of
 

South
 

China
 

Normal
 

University
 

(Natural
 

Science
 

Edition),
 

2023,
 

55(3):
 

46-54.

(上接第 141 页)
[25]　 彭丽红,

 

代洪亮.
 

基于动态水环境模型的龙王港流域综合治

理方案及评估[J] .
 

净水技术,
 

2023,
 

42(9):
 

148-159,
 

202.

PENG
 

L
 

H,
 

DAI
 

H
 

L.
 

Pollution
 

assessment
 

and
 

treatment
 

of
 

Longwanggang
 

Basin
 

based
 

on
 

dynamic
 

water
 

environment
 

model

[J].
 

Water
 

Purification
 

Technology,
 

2023,
 

42(9):
 

148-159,202.

[26] 　 陈燕平,
 

霍培书,
 

汤丁丁,
 

等.
 

基于水质目标可达性分析的

城市内河生态补水方案[J] .
 

净水技术,
 

2022,
 

41(5):
 

102-

111,149.
 

CHEN
 

Y
 

P,
 

HUO
 

P
 

S,
 

TANG
 

D
 

D,
 

et
 

al.
 

Proposal
 

of
 

ecological
 

water
 

supplement
 

for
 

urban
 

rivers
 

based
 

on
 

quality
 

target
 

reachability
 

analysis[ J] .
 

Water
 

Purification
 

Technology,
 

2022,
 

41(5):
 

102-111,149.

[27] 　 袁行知,
 

许雪峰,
 

俞亮亮,
 

等.
 

基于水动力水质模型的平原河

网排污模拟分析[J].
 

中国农村水利水电,
 

2022(12):
 

39-46.

YUAN
 

X
 

Z,
 

XU
 

X
 

F,
 

YU
 

L
 

L,
 

et
 

al.
 

Simulation
 

analysis
 

of
 

sewage
 

discharge
 

in
 

plain
 

river
 

network
 

based
 

on
 

coupled
 

hydrodynamic
 

model [ J] .
 

China
 

Rural
 

Water
 

&
 

Hydropower,
 

2022(12):
 

39-46.

—781—

净　 水　 技　 术

WATER
 

PURIFICATION
 

TECHNOLOGY
Vol. 45,No. 1,2026
January

 

25th,
 

2026


