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基于人口迁徙数据的节假日用水量预测
李仲茂∗

(宁夏水投中宁水务有限公司,宁夏中卫　 755100)

摘　 要　 【目的】　 节假日期间大规模的人口流动会引起城市用水量的显著波动,而传统用水量预测模型无法准确捕捉这一

趋势,导致预测精准度与可靠性不足,影响节假日期间制水计划的科学制定,制约供水系统的调度效率。 本文致力于构建一

种能够有效融合人口动态信息的节假日用水量预测方法,为城市智慧水务系统的发展及科学调度提供理论和技术支持。 【方
法】　 本文提出了一种基于 Transformer 架构的预测模型,采用多头注意力机制捕捉节假日期间用水模式的依赖关系,引入人

口迁徙指数作为关键特征,以 F 市 2024 年劳动节、国庆节的实际用水数据为基础,对模型进行训练与验证,并与未加入人口迁

徙特征的基准 Transformer 模型进行对比。 【结果】　 融合人口迁徙特征的 Transformer 模型在节假日用水量预测任务中表现优

异,具有对节假日人口迁移的动态捕捉能力,预测 R2 从基准模型的 0. 80 提升至 0. 99,显著优于未引入人口迁移特征的传统

模型,有效提升了用水量预测精度。 【结论】　 Transformer 模型中引入人口迁徙数据可作为提升节假日用水预测精度的有效

途径,能够弥补传统预测模型对节假日期间用水峰值变化拟合能力的不足,具有较强的实用性与推广价值。 本文成果为城市

智慧水务系统中短期需水预测提供了新思路,对保障节假日供水安全、优化水资源调度具有重要的理论意义与实践参考

价值。
关键词　 人口迁徙指数　 用水量预测　 Transformer 模型　 节假日效应　 供水管网　 多头注意力机制

中图分类号:
  

TU991　 　 文献标志码:
  

A　 　 文章编号:
  

1009-0177(2026)01-0164-09
DOI:

  

10. 15890 / j. cnki. jsjs. 2026. 01. 020

[收稿日期] 　 2025-08-29
[通信作者] 　

 

李仲茂(1973—　 ),男,高级工程师,主要从事水利工程建设管理、水务运营管理等工作,E-mail:1551446234@ qq. com。

Prediction
 

of
 

Holidays
 

Water
 

Supply
 

Demand
 

Based
 

on
 

Population
 

Migration
 

Data
LI

  

Zhongmao∗

(Ningxia
 

Water
 

Investment
 

Zhongning
 

Water
 

Affairs
 

Co. ,
 

Ltd. ,
 

Zhongwei　 755100,
 

China)

Abstract 　 [ Objective] 　 Large-scale
 

population
 

movements
 

during
 

holidays
 

can
 

cause
 

significant
 

fluctuations
 

in
 

urban
 

water
 

consumption.
 

Traditional
 

water
 

consumption
 

prediction
 

models
 

fail
 

to
 

accurately
 

capture
 

this
 

trend,
 

resulting
 

in
 

insufficient
 

prediction
 

accuracy
 

and
 

reliability,
 

which
 

affects
 

the
 

scientific
 

formulation
 

of
 

water
 

production
 

plans
 

during
 

holidays
 

and
 

constrains
 

the
 

scheduling
 

efficiency
 

of
 

water
 

supply
 

systems.
 

This
 

paper
 

aims
 

to
 

construct
 

a
 

holiday
 

water
 

consumption
 

prediction
 

method
  

that
 

effectively
 

integrates
 

population
 

dynamic
 

information,
 

providing
 

theoretical
 

and
 

technical
 

support
 

for
 

the
 

development
 

of
 

urban
 

smart
 

water
 

systems
 

and
 

scientific
 

scheduling. [Methods]　 This
 

paper
 

proposed
 

a
 

prediction
 

model
 

based
 

on
 

the
 

Transformer
 

architecture,
 

which
 

employed
 

a
 

multi-head
 

attention
 

mechanism
 

to
 

capture
 

dependencies
 

in
 

water
 

usage
 

patterns
 

during
 

holidays.
 

A
 

population
 

migration
 

index
 

was
 

introduced
 

as
 

a
 

key
 

feature.
 

The
 

model
 

was
 

trained
 

and
 

validated
 

using
 

actual
 

water
 

consumption
 

data
 

from
 

the
 

May
 

Day
 

and
 

National
 

Day
 

in
 

City
 

F
  

in
 

2024,
 

and
 

compared
 

with
 

a
 

baseline
 

Transformer
 

model
 

that
 

did
 

not
 

incorporate
 

population
 

migration
 

features.
[Results] 　 The

 

prediction
 

results
 

showed
 

that
 

the
 

Transformer
 

model
 

integrated
 

with
 

population
 

migration
 

features
 

performed
 

excellently
 

in
 

holiday
 

water
 

consumption
 

prediction
 

tasks,
 

demonstrating
 

a
 

dynamic
 

capture
 

capability
 

for
 

holiday
 

population
 

movements.
 

The
 

prediction
 

R2
 

increased
 

from
 

0. 80
 

in
 

the
 

baseline
 

model
 

to
 

0. 99,
 

significantly
 

outperforming
 

traditional
 

models
 

that
 

did
 

not
 

incorporate
 

population
 

migration
 

features,
 

effectively
 

improving
 

the
 

accuracy
 

of
 

water
 

consumption
 

prediction. [Conclusion]　
Incorporating

 

population
 

migration
 

data
 

into
 

the
 

Transformer
 

model
 

serves
 

as
 

an
 

effective
 

approach
 

to
 

enhance
 

the
 

accuracy
 

of
 

holiday
 

water
 

consumption
 

prediction.
 

It
 

addresses
 

the
 

shortcomings
 

of
 

traditional
 

prediction
 

models
 

in
 

fitting
 

water
 

consumption
 

peak
 

variations
 

during
 

holidays
 

and
 

exhibits
 

strong
 

practicality
 

and
 

promotion
 

value.
 

This
 

paper
 

provides
 

new
 

insights
 

for
 

short-term
 

water
 

demand
 

—461—



forecasting
 

in
 

urban
 

smart
 

water
 

systems
 

and
 

holds
 

significant
 

theoretical
 

and
 

practical
 

reference
 

values
 

for
 

ensuring
 

water
 

supply
 

security
 

during
 

holidays
 

and
 

optimizing
 

water
 

resource
 

scheduling.
Keywords　 population

 

migration
 

index 　 prediction
 

of
 

water
 

supply
 

demand 　 Transformer
 

model 　 holidays
 

effect 　 water
 

supply
 

network　 multi-head
 

attention
 

mechanism

　 　 供水管网用水量预测是指基于历史用水量变化

规律,通过建立数学模型、系统模型或经验模型对未

来特定时段用水量进行预估的技术。 该技术作为智

慧水务系统的核心组成部分,是制定制水计划与调

度方案的关键依据,直接影响管网优化调度策略的

生成。 用水量存在显著的区域差异性,并呈现以季

节性为主导的周期性变化特征[1] 。 根据预测时间

步长,模型可分为短期与中长期两类:以分钟或小时

为步长的短期模型主要用于管网实时调度;以日或

月为步长的中长期模型则更适用于供水管网中长期

规划。 工程实践表明:常规用水量预测模型在节假

日场景下存在明显局限性,预测精度显著降低。 通

过多年用水量数据结构分析发现,节假日期间人口

迁徙强度上升引发区域性用水需求突变———本地居

民探亲出游导致区域用水量衰减,而游客涌入景区

则造成服务业用水量激增,而现有短期预测模型未

充分考虑人口迁徙因素导致预测偏差,因此构建精

准的节假日用水量预测模型具有重要现实意义。
经典的时序预测算法已被广泛应用于用水量预

测研究中,如自回归移动平均模型[2] 、指数平滑法

等,这些方法操作方便、计算简单,但依赖特征工程

与样本数据的线性、正态性的假设,而用水量信息的

概率分布具有多样性,因此采用传统算法可能导致

约束松弛或过度约束, 从而表现出预测精度不

足[3] 。 机器学习模型可从大量历史数据中学习用

水量与特征数据之间潜在的复杂关系,突破了传统

方法难以处理高维非线性特征的困境,成为近几年

用水量预测的热点方向。 研究[4] 表明:用水量除了

受时间变化影响之外,还受天气、温度、人口基数等

多个因素的影响。 陆维佳等[5] 考虑平均气温、最高

气温、最低气温和前 7
 

d 用水量,以长短时记忆神经

网络(LSTM)为核心算法,探讨三因素 LSTM、二因

素 LSTM 和单因素 LSTM 水量预测的精度,结果显

示:三因素 LSTM 的平均绝对误差比单因素 LSTM
的降低了 12. 13%,表明机器学习方法学习的特征

数量会影响预测精度。 随着如今信息化建设稳步推

进和物联网广泛部署,运用更多维度、更全面的数据

进行模型学习和预测成为可能[6] ,用水量预测朝着

多特征、高精度方向发展。
机器学习模型结构也会影响用水量预测精度,

模型的选择和优化过程是为了模型能够更好地学习

不同外部变量对用水量的影响程度。 Jahangir 等[7]

分别采用 Transformer 和 LSTM 对多个独立计量分区

(DMA)分区进行用水量预测,发现 Transformer 的平

均预测准确率较 LSTM 高 15. 3%,Transformer 的多

头注意力机制能够使预测精准度得到有效提升[8] 。
Lin 等[9] 提 出 了 一 种 引 入 相 对 位 置 编 码 的

Transformer 模型,发现该方法能够使模型有效统筹

全局和局部特征的关系,因此根据预测目标和数据

特征合理构建模型结构对于提高用水量预测准确率

至关重要。
大多研究受限于人口迁移数据的时效性,聚焦

于年度人口数据与中长期用水量的影响,没有涉及

节假日效应导致的用水量短期突变。 有研究采用

NeuralProphet 模 型 进 行 水 量 预 测, 利 用 Neural-
Prophet 对节假日系数进行拟合来解决水量预测的

节假日效应,该研究创新性将节假日因素考虑到用

水量预测中,但该算法的节假日系数采用拟合的固

定值,未能体现节假日效应的作用机制,无法准确地

反映人口迁移带来的影响。 NeuralProphet 虽善于捕

捉趋势与季节模式,但其结构难以刻画人口流动等

动态因素与用水量间的复杂关联;LSTM-Transformer
混合模型虽兼具局部与全局建模能力,但结构冗余、
参数量大,在有限样本下易过拟合,且特征交互机制

不够精准从而降低了可解释性,不利于本研究对人

口迁徙特征机理的剖析。 此外, 尽管 Informer、
Autoformer 等 Transformer 衍生模型在长序列预测中

表现优异,但其引入的稀疏注意力、序列分解等模块

会大幅增加模型复杂度。
相较之下,采用 Transformer 架构具备以下优

势:一方面结构简洁,避免冗余计算,提升多变量拟

合效率;另一方面,通过将人口迁徙指数嵌入编码

层,并设计注意力权重聚焦机制,使模型能直接捕捉

人口流动引发的用水突变,通过对比有无人口迁徙
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数据的预测结果,便于分析人口迁徙特征的作用机

理。 因此,为突出本研究的核心目标———科学验证

人口迁徙因子的关键作用,最终选择使用结构更简

洁、可解释性更强的标准 Transformer,避免无关因素

对消融试验的干扰,以保障结论的可靠性。 因此,本
研究基于 Transformer 架构,融合人口迁徙特征构建

用水量预测模型。 通过多头注意力机制强化模型对

人口动态的感知能力,显著提升预测精度与可靠性。
进一步结合 SHAP 值分析技术,量化解析人口迁徙

数据对城市用水量的影响机制,为智慧水务系统优

化提供决策支持。
1　 研究方法
1. 1　 数据收集

　 　 本研究收集的各项特征历史数据均来自百度地

图官方数据,采集样本时间范围为 2023 年初—2025
年初,包含人口迁徙指数以及各项气象数据。

城市人口迁徙指数是基于地图服务和大数据分

析技术计算出的人口流动趋势相对指标,分为迁入

指数和迁出指数,分别表示某城市在特定时间内迁

入、迁出的人口比例,该指标计算覆盖了全国 367 个

主要城市,能够有效反映城市间的人口迁徙规模和

迁徙方向(图 1)。

图 1　 人口迁徙数据示例

Fig. 1　 Example
 

of
 

Population
 

Migration
 

Data

温度、气象数据通过与 F 市市中心气象站对接获

取,采样频率为 1
 

h,通过异常值剔除、缺失值插补等

数据处理方法,在排除异常数据的同时确保各项数据

具有统一的时间步长,本研究收集气象指标包括最高

温度、最低温度、白天天气类型、夜间天气类型等。
1. 2　 Transformer 模型构建

　 　 Transformer 模型不同于循环神经网络( RNN)
的线性链和卷积神经网络(CNN)中的感受野结构,
通过自注意力机制拟合各个变量之间的权重关系,

实现输入特征与输出变量之间的良好预测,更好捕

获多变量时序数据中的长期依赖性。 多头注意力是

Transformer 模型的核心机制,可以通过学习不同视

角下特征的复杂关系,捕获到更丰富更全面的信息,
不仅实现了各个特征变量的交互作用,还具有并行

计算、捕捉长距离依赖的特点,模型构建的基础计算

如式(1)。

　

Attention(Q,K,V) = Softmax
QKT

dk
( ) V

MultiHead(Q,K,V) = Concat(head1,…,

　 headh)WO

headi = Attention(QWQ
i ,KWK

i ,VWV
i )

PE(p,2i) = sin
p

10　 000
2i

dmodel( )
PE(p,2i+1) = cos

p

10　 000
2i

dmodel( )
FFN(x) = max(0,xW1 + b1)W2 + b2

loss = 1
N∑

N

i = 1
‖yi -ŷi‖2 + λ‖Θ‖2

ì

î

í

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

ï
ï
ï
ï
ï
ï
ï
ï
ï
ï

(1)

其中:Q ———当前时刻的温度、迁移数据等输入

特征向量;
K ———当前时刻往前一段时间窗口的输

入特征向量;
V ———当前时刻往前一段时间窗口的值

向量;
Softmax———激活函数,把注意力权重的

计算结果
QKT

dk

转化为 0 ~ 1 的概率分布;

dk ———向量的维度,用于缩放点积,防止

梯度消失;
h ———注意力头的数量,每个注意力头用

于捕捉不同输入特征的关系;
head———注意力头;
Concat———拼接操作,将所有注意力头的

输出结果拼接成一个矩阵;
WO ———合并多头输出的权重矩阵;
QWQ

i ,KWK
i ,VWV

i ———每个注意力头的可学

习参数矩阵,用于投影到不同的子空间;
PE———位置编码;
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p ———时间在时序向量中的位置;
i ———维度索引,用于 Transformer 注入时

间信息;
FFN———前馈神经网络的输出值;
W1,W2———两层全连接层的权重;
b1,b2———偏置项;
dmodel ———Transformer 的隐藏层维度;
yi ———实际用水量;
ŷi ———模型预测值;
λ ———L2 正则化系数;
‖Θ‖2———模型参数的 L2 正则项,作用

是防止模型过拟合。

　 　 Transformer 模型结构分别包括由 N 个相同

层堆叠的编码器和解码器,其中编码器由多头

注意力模块和全连接前馈网络组成,选取注意

力头数、特征维度、堆叠层数和丢弃率作为基础

超参数进行网格搜索调优,引入残差连接和标

准化来防止模型退化并提高收敛速度。 相较于

传统时序模型, Transformer 的并行化注意力机

制更适用于高维多元特征融合场景,其特有的

位置编码方案能够显式建模节假日等非平稳时

序模式,本研究采用的 Transformer 流程图如图

2 所示。
Transformer 模型中,人口迁徙特征与气候特征

　 　 　

　 注:F1 ,…,F4 —特征类别;T1 ,…,T6 —时间步。

图 2　 Transformer 算法流程

Fig. 2　 Flow
 

of
 

Transformer
 

Algorithm

通过注意力权重的动态分配实现多层次耦合,每
个注意力头并行计算并作用于 3 类关键交互:迁
徙数据作为核心时序信号与温度极值构成查询-
键值对,用于衡量温度变化对人口流动的影响权

重;天气状态通过位置编码与迁徙流量时序对应,
强化节假日期间异常天气对迁徙模式的扰动效

应;气象特征作为值向量与迁徙时序特征聚合,3
类关键交互共同作用后融合输出。 层归一化将气

象影响编码到时序模式,并利用残差连接保持原

始迁徙趋势的完整性,既能捕捉温度对迁徙的线

性影响关系,也能识别极端天气引发的趋势突变,
最终实现融合气象因素与人口流动数据的用水量

预测模型的构建。

1. 3　 特征数据分析

1. 3. 1　 Pearson 相关性分析

　 　 特征数据分析的目的是寻找相关特征与目标变

量之间的关系,并识别出对预测有价值的特征。 本

研究利用 Pearson 相关系数衡量各个变量与用水量

的相关性,计算如式(2)。

r =
∑

n

i = 1
X i -X

-
( ) Yi -Y

-
( )

∑
n

i = 1
X i -X

-
( ) 2 ∑

n

i = 1
Yi -Y

-
( ) 2

(2)

其中:X i、Yi——— 不同特征的样本值;

X-、Y- ———不同特征的样本均值;
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n ———样本的数量;
r ———Pearson 相关性系数。

Pearson 相关系数的绝对值越大,相关性越强;
越接近于 0,相关度越弱。 一般来说,r= 0 ~ 0. 2 为极

弱相关或无相关,r = 0. 2 ~ 0. 4 为弱相关, r = 0. 4 ~
0. 6 为中等程度相关, r = 0. 6 ~ 0. 8 为强相关, r =
0. 8 ~ 1. 0 为极强相关。
1. 3. 2　 SHAP 值分析方法

　 　 SHAP 的核心思想源自合作博弈论中的 Shapley
值理论,即在合作博弈中,多个参与者通过协作产生

集体收益,通过计算每个参与者在所有可能的合作

组合中的边际贡献,可确定各参与者对收益的贡献

权重。 这一思想迁移到机器学习特征重要性分析

中,将每个特征视为博弈参与者,计算每个特征对结

果的贡献程度即为 SHAP 分析过程,具体步骤如下

(以人口迁移数据为例)。
1)确定总特征数 F 和时间窗口长度 T,形成特

征集合。
2)以训练数据的均值作为基准值,用于特征部

分缺失时合理预测,计算如式(3)。

ϕ0 = E[ f(X)] = 1
N∑

N

i = 1
f(X i) (3)

其中:ϕ0———基准值;
E[ f(X)] ———模型在所有训练样本 X 上

的预测值期望;
N ———训练样本的数量;
f(X i) ———模型对第 i 个训练样本的预

测值。
3)列举所有可能的特征子集 S ,对于每个子

集,利用式(4)计算边际贡献值。

Δ(S,Mt -k) = f(S ∪ {Mt -k}) - f(S) (4)

其中:Mt -k ———第 t-k 时刻的历史人口迁移量;
Δ(S,Mt -k) ———表示特征子集 S 加入历

史人口迁移量 Mt -k 后的边际贡献值;
f(S) ———仅用子集 S 计算的预测值;
f(S ∪ {Mt -k}) ———加入历史时刻人口迁

移量 Mt -k 后的预测值。
4)利用式(5)计算历史时刻人口迁移量 Mt -k 的

加权平均边际贡献值。

ϕMt -k = ∑ | S | ! (FT -| S | - 1)!
FT!

Δ(S,Mt -k)

(5)

其中:ϕMt -k ———历史人口迁移量 Mt -k 对应的

SHAP 值;
| S | ———特征子集 S 包含的特征数量;
FT———时间窗口内的特征总数;
| S | ! (FT- | S | -1)!

FT!
———特征权重。

5)对于时刻 t 而言,用水量预测会受到过去 T
时段内人口迁移特征的累计影响,聚合时间窗口的

SHAP 值得到该特征的总贡献值为 ∑
T

k = 1
ϕMt -k。

通过以上步骤可分别计算各个特征的 SHAP
值,该值正负性反映了特征对模型预测的影响方向,
若 SHAP 值为正,表明该特征对预测结果起到正向

促进作用,反之则表示该特征对预测结果产生抑制

作用,同一次预测中不同特征 SHAP 值的相对大小

进行特征的重要性排序,SHAP 绝对值越大说明该

特征对预测结果的决定性作用越强。 通过分析不同

样本的 SHAP 值分布,不仅能识别关键驱动因素,还
能发现特征间的非线性关系和条件依赖效应为模型

决策提供了透明、可验证的解释。
2　 案例分析
2. 1　 案例城市介绍

　 　 本文选用 F 市为研究对象进行用水量预测,该
市主城区总面积为 1

 

761. 2
 

km2,截至 2024 年,地区

常住人口为 850. 1 万人,流动人口为 116. 57 万人,
流动人口占比为 13. 71%,采用 Pearson 相关系数分

析法对日用水量、日最小流量、日最大流量、人口迁

入指数、人口迁出指数等特征进行相关性分析,绘制

得到相关性热力图如图 3 所示。
根据相关性热力图分析结果可知:相对迁徙指

数(迁入指数-迁出指数)与日用水量变化之间具有

强相关性,说明节假日期间人口迁徙是影响用水量

变化的重要指标,如图 4 所示。 同时,人口迁入指数

与日用水量、日最大流量之间具有较强的相关性,日
最小流量与各项迁徙指数之间则呈现弱相关性,说
明了节假日期间人口迁徙对夜间用水低谷时段作用

效果甚微,是通过显著影响用水高峰时段的用水情

况从而影响用水量。
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图 3　 各特征之间的 Pearson 相关性热力图

Fig. 3　 Pearson
 

Correlation
 

Heatmap
 

among
 

Various
 

Features

图 4　 2024 年劳动节与国庆节前后日用水量变化及人口相对迁徙指数变化

Fig. 4　 Changes
 

of
 

Daily
 

Water
 

Consumption
  

and
 

Relative
 

Migration
 

Indexes
 

during
 

May
 

Day
 

and
 

National
 

Day
 

Holidays
 

in
 

2024

该城市 2023 年初—2025 年初的供水监测数据

显示,在国庆节、劳动节等热门旅游期间较平时变化

明显,存在显著的节假日效应,如图 5 所示。
2. 2　 用水量预测

　 　 选取劳动节、国庆节前后作为节假日预测的典

型时段,采用 Transformer 模型,以 2023 年初—2025
年初的温度、历史用水量作为基础参数对该城市供

水管网用水量情况进行逐年预测。 2024 年劳动节、
国庆节前后,不考虑人口迁移的用水量预测结果如

图 6 所示,引入人口迁移指数后如图 7 所示,蓝色曲

线为实际用水曲线,红色曲线为预测曲线。
研究表明:未加入人口迁移数据的 Transformer

模型对节假日前后用水量极值的拟合性较差,这主

要是因为传统模型仅从气象数据中无法学习到节假

日与非节假日的不同用水模式,难以捕捉由人口动

态引发的节假日用水突变行为。 在引入人口迁徙指

数后,模型预测结果展现出更高的一致性与拟合度,
一致性分析中 R2 从 0. 80 显著提高到 0. 99,特别是

在用水高峰点和转折点处,预测值与实际值的吻合

程度显著提升,有效提高了预测精度,充分凸显了迁
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图 5　 2024 年劳动节与国庆节节假日效应图

Fig. 5　 Chart
 

of
 

the
 

May
 

Day
 

and
 

National
 

Day
 

Holiday
 

Effect
 

in
 

2024

图 6　 无人口迁徙数据的用水量预测结果

Fig. 6　 Forecasted
 

Water
 

Consumption
 

without
 

Migration
 

Data

图 7　 引入人口迁徙数据的用水量预测结果

Fig. 7　 Water
 

Consumption
 

Prediction
 

with
 

Population
 

Migration
 

Data

徙特征在准确预测节假日用水量中的关键价值。
2. 3　 特征 SHAP值分析

　 　 以 2024 年国庆节的节假日用水量预测模型为

研究对象进行 SHAP 值计算, SHAP 分析如图 8
所示。

根据 SHAP 值时序分析图可以分析人口迁徙指

标影响用水量的潜在机制。 一方面,相对人口迁徙

指数的 SHAP 值在节前时段基本为负数,表明人口

出流现象在节前已经开始并在节日当天达到出流高

峰,相应用水量呈现同步下降趋势;节中时段相对人

口迁徙指数对用水量的贡献由负转正,对应人口的

逐渐回流带来用水量的回升,因此 SHAP 值的变化

与实际人口迁徙行为高度一致,验证了相对人口迁

徙指标作为节假日动态扰动主导变量的合理性。 另

一方面,通过对比国庆节期间与非节假日期间的

SHAP 值发现,各特征影响力主导状况发生了显著

转变。 非节假日时,虽然最低温度是用水量主要影

响因素,但各特征间的 SHAP 值差异不大。 而进入
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图 8　 2024 国庆节用水量预测模型的 SHAP 值时序分析图

Fig. 8　 Temporal
 

Analysis
 

of
 

SHAP
 

Values
 

for
 

the
 

2024
 

National
 

Day
 

Water
 

Consumption
 

Forecast
 

Model

国庆假期后,相对人口迁徙指数的影响力激增约

2. 1 倍,人口迁徙指数的影响力显著提高,占据了主

导地位;与此同时,最高温度和最低温度的影响分别

降至 41. 94%和 57. 43%,该规律在劳动节的分析中

亦得到明确验证,表明此现象并非个案,而是节假日

用水模式的共同特征。
综上所述,SHAP 值分析不仅提升了模型的可

解释性,也为研究节假日用水变化规律提供了数据

支撑。 本研究揭示了人口迁徙对节假日用水预测的

重要影响,有助于水务决策者制定更符合实际、更准

确的调度策略。
3　 结论与展望
　 　 本文针对节假日期间供水量预测误差显著增大

的现象,以节假日期间人口流动性增强与用水量的

关联性为基础,提出了融合人口迁徙数据的多变量

Transformer 模型,提高了模型对节假日期间用水量

的预测能力。
(1)节假日人口迁移对用水需求具有显著影

响,人口迁徙特征通过显著影响用水高峰时段的用

水情况从而影响节假日期间的用水量变化。
(2)加入人口迁徙特征的 Transformer 模型显著

提升了节假日用水预测精度,在典型节假日场景中

R2 由 0. 80 提升至 0. 99,该模型在应对节假日用水

需求波动方面具备良好的适应性和泛化能力。
(3)SHAP 值解释分析,进一步揭示了人口迁徙

对节假日用水变化的驱动机制,说明人口迁徙因素

是节假日用水量动态扰动主导变量。
该模型通过高精度预测,为节假日供水运营提

供关键的数据驱动决策。 一方面,赋能调度系统优

化泵站启停与阀门调控;另一方面,指导水厂精准调

整制水负荷与药剂投加,最终在保障供水安全与稳

定前提下,达成降本增效的目标。
展望未来,该模型框架可从三方面深化:一是拓展

应用至大型活动、旅游高峰等类似场景;二是引入区域

特征进行分区建模,以提升局部预测精度;三是与水务

业务系统深度集成,构建从预测、调度到响应的智能决

策闭环,全面提升供水系统的可靠性与经济性。
(下转第 178 页)
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