
净水技术 2026,45(1):19-25 Water
 

Purification
 

Technology

陈华,
 

孙竟翔.
 

城市内涝模拟中机理驱动、数据驱动及混合模型的对比研究与进展综述[J] .
 

净水技术,
 

2026,
 

45(1):
 

19-25.
CHEN

 

H,
 

SUN
 

J
 

X.
 

Comparative
 

study
 

and
 

review
 

of
 

progress
 

on
 

mechanism-driven,
 

data-driven,
 

and
 

hybrid
 

models
 

in
 

urban
 

waterlogging
 

simulation
 

[J] .
 

Water
 

Purification
 

Technology,
 

2026,
 

45(1):
 

19-25.

城市内涝模拟中机理驱动、数据驱动及混合模型的对比研究与
进展综述
陈　 华1,2,孙竟翔1,2,∗

(1. 广东省环保研究总院有限公司,广东广州 　 510062;2. 广东省污水深度处理提质增效工程技术研究中心,广东广州 　
510062)

摘　 要　 【目的】　 针对城市化进程加速与极端暴雨频发背景下城市内涝治理需求,解决当前内涝模拟模型(机理驱动、数据

驱动及混合模型)研究总结与对比不足的问题,为内涝精细化模拟及规划决策提供支撑。 【方法】　 本文系统梳理机理驱动模

型、数据驱动模型及混合模型的研究现状,对比分析各类模型的技术特性、适用场景、优势与局限,重点剖析混合模型的耦合

路径及应用案例。 【结果】　 机理驱动模型可精细刻画物理过程,但存在计算效率低、数据依赖强等局限;数据驱动模型能实

现快速预测却面临物理可解释性弱、泛化能力受限等问题;混合模型通过整合两类模型优势,在提升模拟精度与效率上表现

突出,成为技术融合的重要方向。 【结论】　 本文明确了不同模型的适用边界与发展潜力,为城市内涝精细化模拟、智能决策

提供了理论依据与方法参考,凸显了技术融合在应对复杂内涝场景中的实践价值。
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Abstract 　 [ Objective] 　 In
 

response
 

to
 

the
 

need
 

for
 

urban
 

waterlogging
 

management
 

under
 

the
 

background
 

of
 

accelerating
 

urbanization
 

and
 

frequent
 

extreme
 

rainstorms,
 

this
 

paper
 

aims
 

to
 

address
 

the
 

insufficient
 

summary
 

and
 

comparison
 

of
 

current
 

waterlogging
 

simulation
 

models
 

( mechanism-driven,
 

data-driven,
 

and
 

hybrid
 

models),
 

and
 

provide
 

support
 

for
 

refined
 

waterlogging
 

simulation
 

and
 

planning
 

decision-making. [Methods] 　 The
 

research
 

status
 

of
 

mechanism-driven
 

models,
 

data-driven
 

models,
 

and
 

hybrid
 

models
 

is
 

systematically
 

reviewed.
 

The
 

technical
 

characteristics,
 

applicable
 

scenarios,
 

advantages,
 

and
 

limitations
 

of
 

various
 

models
 

are
 

compared
 

and
 

analyzed,
 

with
 

a
 

focus
 

on
 

analyzing
 

the
 

coupling
 

paths
 

and
 

application
 

cases
 

of
 

hybrid
 

models.
[Results]　 Mechanism-driven

 

models
 

can
 

accurately
 

depict
 

physical
 

processes
 

but
 

have
 

limitations
 

such
 

as
 

low
 

computational
 

efficiency
 

and
 

strong
 

data
 

dependence;
 

data-driven
 

models
 

can
 

achieve
 

rapid
 

prediction
 

but
 

face
 

problems
 

such
 

as
 

weak
 

physical
 

interpretability
 

and
 

limited
 

generalization
 

ability;
 

hybrid
 

models,
 

by
 

integrating
 

the
 

advantages
 

of
 

the
 

two
 

types
 

of
 

models,
 

have
 

shown
 

outstanding
 

performance
 

in
 

improving
 

simulation
 

accuracy
 

and
 

efficiency,
 

becoming
 

an
 

important
 

direction
 

of
 

technical
 

integration.
[Conclusion]　 This

 

paper
 

clarifies
 

the
 

applicable
 

boundaries
 

and
 

development
 

potential
 

of
 

different
 

models,
 

provides
 

a
 

theoretical
 

basis
 

and
 

method
  

reference
 

for
 

refined
 

urban
 

waterlogging
 

simulation
 

and
 

intelligent
 

decision-making,
 

and
 

highlights
 

the
 

practical
 

value
 

—91—



of
 

technical
 

integration
 

in
 

dealing
 

with
 

complex
 

waterlogging
 

scenarios.
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　 　 城市内涝作为全球城市化进程中日益严峻的

“城市病”,其频发态势与气候变化、下垫面改变及

基础设施滞后密切相关[1] 。 气候变化引发的极端

暴雨事件频次上升,叠加“城市热岛” 和“雨岛” 效

应,导致短历时、高强度降雨成为内涝的主要诱

因[2] 。 另外,城市化进程中不透水面积占比激增,
削弱了地表渗透与调蓄能力,而老旧管网设计标准

偏低(如部分城市排水系统仅达 1 ~ 2 年一遇标准),
进一步加剧了排水压力[3] 。 此类灾害具有突发性

强、影响范围广、连锁风险高等特征,不仅威胁交通

运行与居民安全,更对城市生态与经济造成巨额损

失———2021 年郑州“7·20” 暴雨直接经济损失超

1
 

200 亿元,凸显了内涝防治的紧迫性[4] 。 在此背

景下,利用数学模型优化排水设计对于内涝防治规

划、降低灾害损失具有重要意义。
当前城市内涝模拟研究形成了机理驱动与数据

驱动两大技术体系[2] 。 机理驱动模型以水动力学

原理为核心,通过求解圣维南方程组等刻画产汇流

过程,典型代表如暴雨洪水管理模型 ( SWMM)、
MIKE

 

URBAN 等,可精细模拟管网溢流与地表积水

动态,但存在计算耗时长、对高分辨率地形数据依赖

强等局限[5] 。 数据驱动模型则基于机器学习算法

[如长短期记忆网络(LSTM)、随机森林],通过挖掘

历史降雨与内涝数据的关联实现快速预测,在实时

预警中展现优势,但其物理可解释性弱、泛化能力受

数据质量制约[6-7] 。 近年来,混合模型成为研究热

点,例如将机理模拟结果作为机器学习输入或将物

理方程嵌入神经网络,从而实现优势互补,例如可通

过“数值模拟+智能优化”策略提升预测可靠性[8] 。
在极端暴雨事件趋多与城市化进程加速的双重

背景下,推进极端暴雨引发的城市内涝模拟工作,已
成为内涝防治规划及防灾减灾举措的关键环节与前

沿方向,这对提升内涝风险防范水平、减轻内涝灾害

带来的损失而言,具有不可忽视的价值。 目前已有

学者对常见内涝模型的原理及应用案例进行过归

纳,但随着机器学习等数据驱动模型以及数据-机

理耦合模型的兴起及其在城市内涝防治中的应用日

益增多,当前对该类模型在内涝领域应用的总结以

及对比仍不足。 为此,本文通过系统梳理各类内涝

模型的适用场景、优势及局限,归纳了机理与数据混

合模型的研究动态及未来走向,以期为精细化模拟

与智能决策提供理论支撑和方法参考。
1　 机理驱动模型的研究进展
1. 1　 主流机理驱动模型及特性分析

　 　 机理驱动模型以水文水动力学原理为核心,通
过数学方程量化降雨产汇流、管网水流运动等物理

过程,其发展历经从单一管网模拟到多过程耦合的

演进。 目前主流模型包括 SWMM 系列、 InfoWorks
系列、DHI 系列等,其技术特性与应用场景各有侧

重[9] 。 美国国家环境保护局( EPA) 开发的 SWMM
凭借开源特性成为应用最广泛的工具之一,其核心

通过求解圣维南方程组模拟管网非恒定流,支持

Green-Ampt、Horton 等下渗算法与动力波、运动波等

汇流方法的灵活组合,适用于单一暴雨事件或长期

水文过程分析[10] ;丹麦水利研究所研发的 MIKE
 

URBAN 则侧重地表与管网的双向耦合,采用隐式有

限差分法处理一维水流问题,并可集成 MIKE
 

21 模

块实现二维地表漫流模拟,在复杂地形条件下的积

水过程刻画中表现突出[11] ;英国 HR
 

Wallingford 公

司的 InfoWorks 系列以多尺度模拟为特色,提供双线

性水库、SPrint 等多样化汇流模型,可动态响应受纳

水体水位顶托对排水系统的影响,在合流制管网溢

流分析中应用广泛[12-13] 。
1. 2　 关键参数与建模需求

　 　 机理驱动模型的精度高度依赖参数选取与数据

质量,核心输入要素包括 3 类:降雨数据需满足时空

分辨率要求,观测降雨可采用雨量计或校正后的雷

达数据,设计降雨则需基于当地暴雨强度公式推求,
如年最大值法配合耿贝尔分布曲线可显著提升短历

时降雨过程的拟合度[14] ;下渗与产流参数需反映地

表覆盖特性, Green-Ampt 模型的饱和渗透系数、
Horton 模型的初始下渗率等关键参数,需通过野外

试验或经验公式校准;地形与管网数据要求更高,高
精度数字高程模型(DEM)(建议分辨率≤5

 

m)用于

识别地表汇流路径,而管网拓扑信息(管径、坡度、
检查井位置)的准确性直接影响水力计算结果[15] 。

建模流程需经历数据预处理、参数率定与多情

景验证 3 个阶段。 数据预处理阶段需完成降雨序列
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时空对齐、管网拓扑纠错与地形数据平滑;参数率定

可采用遗传算法或贝叶斯优化方法,以纳什效率系

数(NSE)、峰值相对误差为核心指标,使模拟结果与

实测数据的吻合度满足工程要求;验证阶段则需覆

盖不同重现期降雨情景,确保模型在常规与极端暴

雨条件下均能稳定输出[2] 。
1. 3　 机理驱动模型典型研究案例

　 　 目前机理驱动模型在城市内涝风险评估和管

网优化等领域应 用 广 泛, 如 翟 明 硕 等[16] 采 用

SWMM 模型对广州市芳村围排涝片内 8 个易涝点

进行排水模拟,模拟结果表明:该模型能很好地预

测不同降雨的内涝情况,为内涝防治提供重要依

据;魏鑫[17] 利用 InfoWorks
 

ICM 模拟了辽宁省阜新

市主城区排水情况,结果发现:研究区满足 2 年一

遇及以上的管网仅占比 4%,且大多风险区域存在

下垫面透水性较差的现象。 此外,根据不同模拟

结果给出一系列改造方案和内涝防治建议;侯俊

等[18] 利用 MIKE
 

FLOOD 模型对昆山市淀山湖镇

进行内涝模拟并对模型进行率定和验证,结果表

明:对于重现期较小的城市应优先考虑管网改造,
而应对短时间强降雨的情况,应优先采用海绵城

市建设方案,因地制宜降低内涝风险,研究成果为

雨水系统的设计和标准制定等提供技术支撑。 此

外还有利用多种机理驱动耦合模型应用于内涝模

拟的相关研究,例如郑恺原等[19] 耦合二维水动力

学模型与 SWMM,构建了地表及管网双向互馈的

内涝模型,结果表明该模型可成功模拟不同重现

期降雨的内涝深度和风险指数,助力当地防涝预

警;栾慕等[20] 利用 SWMM 和 MIKE 耦合模型实现

了对桐庐县降雨过程、产流汇流、排涝等水动力学

过程的精确模拟,并综合分析内涝成因,结果表

明:当地存在管网排水能力不足,管道铺设不合

理,河水倒灌,雨水出水系统不完善,部分地区地

势低洼等问题,综合因素导致了内涝的产生。
1. 4　 机理驱动模型的优缺点分析

　 　 机理驱动模型的优势主要体现在 3 个方面:一
是物理机制明确,能够系统解析内涝形成的动态过

程,如 SWMM 通过求解圣维南方程组可量化管网溢

流与地表积水的联动关系,InfoWorks 系列模型能模

拟受纳水体水位顶托对排水系统的影响,为内涝成

因诊断提供直接依据;二是可解释性强,模型参数

(如曼宁系数、下渗率)与实际水文特征直接关联,

便于通过参数敏感性分析优化工程措施,例如基于

Green-Ampt 下渗模型可精准评估透水铺装对产流

的削减效应;三是支持多情景模拟,能通过调整降雨

重现期、管网拓扑等参数,量化不同设计方案的排涝

效能,为低影响开发( LID)措施布局和管网改造提

供量化支撑[21-22] 。
然而,该类模型存在显著技术局限:其一,计算

效率低下,高分辨率模拟(如 5
 

m 网格)在复杂城区

耗时可达小时级,难以满足实时预警需求;其二,数
据依赖性强,需高精度 DEM、管网拓扑及降雨数据,
在老旧城区或数据稀缺区域,因参数缺失易导致模

拟误差过大;其三,参数校准复杂,如 Horton 模型的

初始下渗率与土壤湿度动态关联,单一率定值难以

适配 不 同 降 雨 情 景, 可 能 使 产 流 量 模 拟 偏 差

较高[23] 。
2　 数据驱动模型的研究进展
2. 1　 主流数据驱动模型特性分析及建模需求

　 　 数据驱动模型通过挖掘历史数据中内涝特征与

影响因素的隐含关联实现模拟预测,无需预设物理

方程,根据算法特性可分为传统机器学习与深度学

习两大分支[24] 。 传统机器学习模型擅长处理高维

输入特征与非线性关系,在洪水易发性分区中能量

化不透水面比例、地形坡度等因素的权重,但其分类

边界易受样本分布影响,在极端暴雨等罕见场景中

能力受限[25] ;深度学习模型凭借深层网络结构强化

时空特征提取能力,成为复杂场景模拟的核心工具。
LSTM 通过输入门、遗忘门与输出门的协同调控,可
捕捉降雨强度与积水深度的动态时序关联[26] 。 数

据驱动模型的数据采集与处理步骤非常重要,数据

的质量决定了模拟的精度和可信度,相关步骤如图

1 所示。
2. 2　 数据驱动模型典型研究案例

　 　 在多因素耦合分析场景中,随机森林模型展现

出对复杂变量交互效应的解析优势。 盛志军等[27]

利用随机森林算法开展南昌市的内涝风险预估,结
果表明:短时强降雨或暴雨是导致该地积水深度超

过 50
 

cm 的主要降雨类型。 该模型的训练集和测试

集的预测精确率分别为 96%和 79%,且对 2 次暴雨

的内涝灾害等风险等级预估准确率也分别达到

67%和 56%;李颖等[28] 采用随机森林算法和 BP 神

经网络算法对辽宁省暴雨条件下的城市承载力进行
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图 1　 数据采集和处理步骤

Fig. 1　 Data
 

Acquisition
  

and
 

Processing
 

Steps

实证分析,结果表明:随机森林算法的误差仅为

9. 3%,优于 BP 神经网络算法的误差;在短时预警

场景中,LSTM 模型的时序捕捉能力得到充分体现。
薛丰昌等[29] 利用 LSTM 模型预测开封市各监测点

积水深度,结果表明:模型能够克服传统时序预测模

型在处理非线性关系时的局限性,在模拟极端强降

雨下的积水深度模拟的均方根误差均小于 4
 

cm,具
有较高的准确性和可靠性;朱健[30] 提出利用循环神

经网络(RNN)对 LSTM 进行改进,并对流体管网充

满度进行预测,结果表明模型经优化后准确度相比

RNN 和 LSTM 模型提升 2%,同时预测时间缩短了

3 倍,有效提高了预测效率。
2. 3　 数据驱动模型的优缺点评价

　 　 数据驱动模型凭借数据挖掘与算法学习的优

势,在城市内涝模拟中展现出独特价值,但其技术特

性也存在显著局限,需结合应用场景合理选用。 在

优势方面,数据驱动模型的核心竞争力体现在计算

效率与复杂关系捕捉能力上。 相较于机理模型动辄

数小时的运算耗时,基于随机森林或 LSTM 的模型

可在分钟级完成大范围积水模拟[31] 。 然而,数据驱

动模型的局限性同样显著。 首先,模型性能高度依

赖数据质量,数据过少或质量过低会导致预测误差

过大,因此难以应用于老旧城区等数据匮乏区域。
其次,物理可解释性不足,深度学习模型的“黑箱”
特性使得积水成因分析缺乏明确的水文机理支撑,
例如某模型虽然能精准预测立交桥区积水,但无法

解析管网溢流与地表漫流的耦合路径。 此外,在极

端暴雨情景下,由于历史数据中罕见事件样本不足,
模型易出现预测偏差[32] 。

3　 机理和数据混合模型的研究进展和发展
趋势
　 　 上述分析表明:数据驱动模型更适用于数据充

足、需快速响应的场景(如短时预警、多情景对比),
但需与机理模型结合以弥补物理逻辑缺失的短板,
而混合模型通过整合机理驱动与数据驱动的优势,
形成“物理逻辑+计算效率”的协同框架,其核心在

于通过动态耦合机制解决单一模型的适应性局限。
目前,混合模型的耦合路径主要分为 2 类:一是机理

模型辅助数据驱动模型,即利用机理模型生成的物

理过程数据补充训练样本或约束预测边界,例如将

SWMM 模拟的管网流量作为 LSTM 的输入变量,结
合物理模型和数据模型的优点,模拟精度进一步提

升,在预测洪水过程中表现出显著优势[33-34] ;二是

数据驱动模型优化机理模型,借助机器学习算法简

化机理模型的计算或优化参数校准,张莉[35] 利用

MIKE
 

FLOOD 构建了城市内涝雨洪模型并通过决策

树、随机森林法和极限梯度提升等多种方法对内涝

积水进行模拟和预测,结果表明:3 种模型的预测精

度均达到 80%以上,其中极限梯度提升模型精度最

高,为 87. 8%,且总计算时长仅为 25
 

s,相比 MIKE
 

FLOOD 提高了 1
 

439 倍。 林凯荣等[8] 将传统水利

模型和卷积神经网络以及 LSTM 结合,并引入注意

力机制,实现对深圳市大空港新城区内涝积水深度

的快速预测,但预测精度在延长预见期后会略微下

降,相比于传统水动力模型,该模型的模拟效率可提

高 200 倍左右。 混合模型的优势突出,能够平衡模

拟精度与效率,增强对数据稀缺场景的适应性,提升

复杂场景的泛化能力,但也存在局限性,如建模复杂

度高,对跨学科知识要求高,耦合边界界定缺乏统一

标准,高分辨率模拟时对计算资源需求更高。 机理

模型、数据模型以及混合模型的优缺点和适用性如

表 1 所示。
混合模型作为整合机理驱动与数据驱动优势的

技术方案,其发展趋势聚焦于耦合机制的精细化、技
术效能的最优化及应用场景的多元化。 在耦合机制

上,不再采用固定权重分配,而是依据降雨强度与下

垫面特征动态调整:常规暴雨情景下以数据驱动模

型主导计算效率,机理模型仅用于关键参数校准。
在技术优化层面,重点突破高分辨率模拟的效率瓶

颈,压缩模型冗余参数,同时保留地形高程、管网拓
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　 　 　 表 1　 机理驱动和数据驱动模型的对比分析
Tab. 1　 Comparative

 

Analysis
 

of
 

Mechanism-Driven
  

and
 

Data-Driven
 

Models

类型 实现方式 适用条件 优点 缺点

机理驱动

模型

基于物理定量的水

动力模型( SWMM、
InfoWorks、 Mouse、
Mike、Grass 等)

(1) 适用于历史内涝数据匮乏,
但具备详尽地形、土壤类型及排

水系统等物理参数的区域;
(2)需深入解析内涝形成机制的

场景,如降雨、地表径流、管网运

行、地表积水扩散等物理过程的

详细阐释;
(3)适用于为政策制定提供科学

支撑的情境,例如城市排水系统

优化及内涝防治规划等场景

(1)物理机制明确,能够清晰

阐释各种水文及水动力过程,
可深度解析内涝成因;
(2)参数可解释性强,便于工

程优化;可精准评估工程措施

的效果

(1)模型的构建与校验耗时较长,尤其是

数据收集与参数校准流程较为复杂,难以

满足实时需求;
(2)数据依赖性强,对于数据稀缺区域易

导致模拟误差大;
(3)对计算资源需求较高,在大范围、高
分辨率模拟场景中,求解效率偏低

数据驱动

模型

基于统计学习或深

度学习等模型( 线

性回归、随机森林、
支持向量机、卷积

神经网络、强化学

习模型、多层感知

机等)

(1)适用于历史内涝数据充足的

区域,能够借助数据挖掘内涝发

生的模式与规律;
(2)在需快速响应及实时预测的

场景中,数据驱动模型可快速输

出预测结果;
(3) 擅长应对复杂的非线性关

联,尤其适用于刻画内涝与降雨

间的动态相互作用

(1)计算效率高,响应速度快,
适用于大规模实时预测及实际

应用场景;
(2)能有效挖掘降雨强度、下

垫面、地形等数据之间的联系;
(3)对不同数据环境及输入特

征的适应性较强, 泛化性能

较好

(1)依赖大量高质量的历史数据,数据缺

失或存在噪声时易导致模型性能下降;
(2)模型解释性较弱,难以深入解析内涝

形成的内在机理;
(3)在假设情境或未知条件下,模拟结果

稳定性不足,难以确保在多样场景中的可

靠表现

机理和数

据 混 合

模型

将各种传统机理驱

动模型和数据驱动

模型进行耦合

(1)适用于需平衡模拟精度与效

率的场景,既可以描述各种水力

学过程,又可快速输出结果辅助

决策;
(2)适用于数据稀缺或极端事件

模拟场景,解决传统数据模型对

极端事件预测能力不足的问题

(1)兼顾模拟精度和效率;
(2)适用于复杂场景的模拟;
(3)强化物理可解释性与决策

支撑

(1) 建模复杂度高,对跨学科知识要求

高;
(2)耦合边界界定缺乏统一标准;
(3)高分辨率模拟时对计算资源需求更

高

扑等核心要素,使计算效率进一步提升。 在技术优

化方面,结合实时降雨数据和历时数据实时计算管

网状态,找到内涝风险点并计算风险指数,快速输出

模拟结果;应用场景上,混合模型的未来应用将更聚

焦于复杂现实需求的深度适配,形成多维度、精细化

的落地路径:在实时应急预警与调度中,可整合物联

网实时监测数据(如雷达降雨、管网水位、积水深

度),通过机理模型解析管网溢流、地表漫流的动态

物理关联,数据驱动模型则快速生成未来 12
 

h 的积

水演进预测,为应急部门提供相关决策支持;在极端

暴雨与气候变化耦合场景中,结合气候预测数据,通
过机理模型模拟不同气候情景下的产汇流机制演

变,数据驱动模型学习历史极端事件与气候因子的

关联规律,为超标准暴雨防御工程的规模设计提供

长周期风险评估依据;在智慧排水系统联动控制中,
将耦合模型与管网物联网系统(如智能水泵、闸门

传感器)实时对接,机理模型解析管网水力状态以

避免“过度调度”,数据驱动模型则根据实时流量数

据优化调度策略,实现水泵启闭、闸门调节的动态适

配。 这些场景既符合基于排水防涝模型的规划策略

中“技术支撑决策”的政策导向,又弥补了单一模型

在复杂问题分析中的局限性,形成“动态耦合+效能

优化+场景适配”的技术闭环,凸显混合模型在应对

复杂内涝场景中的实践价值。
4　 结论与展望
　 　 本文围绕排水模型在城市内涝模拟中的应用,
系统梳理了机理驱动模型、数据驱动模型及混合模

型的研究进展。 研究表明:机理驱动模型基于水文

水动力学原理,能精准刻画产汇流、管网水流等物理

过程,在排水系统规划与多情景分析中优势显著,但
存在计算耗时、对高精度地形及管网数据依赖性强

的局限;数据驱动模型依托机器学习算法实现内涝

快速预测,在短时预警场景中表现突出,却因物理可

解释性弱、泛化能力受数据质量制约,难以支撑复杂

排水机理分析。 混合模型通过整合 2 类模型优势,
在提升模拟精度与效率上成效显著,成为当前技术
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发展的重要方向。 未来研究中,机理驱动模型可结

合智能算法进一步优化参数校准,缩短校准周期。
另外,可在保证核心物理过程的前提下降低高分辨

率模拟的算力需求,从而简化计算模块;数据驱动模

型可将水文规律作为约束条件提升可解释性,强化

物理机制嵌入。 此外,可增加罕见暴雨数据样本进

行模拟,提升在该场景下的精确性。 而混合模型的

研究需重点突破在 3 个方面:一是耦合机制的自适

应智能化,开发基于强化学习的动态权重调整算法,
实现常规与极端情景下机理模型与数据驱动模型的

自主切换;二是多源数据深度融合,整合管网水位、
积水深度、气候数据等实时监测数据,提升模型对动

态环境的响应能力;三是多尺度模拟与工程化工具

开发,实现从微观管网水流到宏观区域内涝的无缝

耦合,并开发面向规划人员的轻量化工具,推动混合

模型在排水管网改造、LID 措施布局、极端暴雨应急

调度等场景的标准化应用,最终通过技术融合为城

市内涝精细化防治与智能决策提供更坚实的理论与

方法支撑。
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