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Abstract [ Objective] The magnetic field-enhanced constructed wetland ( MF-CW ) is an environmentally friendly wastewater
treatment technology. Due to its outstanding performance in nitrogen removal of wastewater, it has been increasingly used for domestic
wastewater treatment in recent years, demonstrating significant advantages and application potential. Machine learning ( ML)
techniques have shown excellent effectiveness in improving prediction accuracy by simulating and analyzing various influencing
parameters in water quality. Therefore, establishing a high-precision ML model to predict the effluent ammonia nitrogen concentration
of the MF-CW system is crucial for advancing its technological development. [ Methods] Based on the magnetic field-enhanced
constructed wetland system and using actual measured data as model inputs, this paper constructed and compared different machine
learning algorithm models. Four ML models were developed, including backpropagation neural network ( BPNN), particle swarm

optimization-based BPNN ( PSO-BPNN) , long short-term memory (LSTM) , and random forest (RF) , to predict the ammonia nitrogen
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concentration of the MF-CW system. Three performance metrics including coefficient of determination ( R*), root mean square error
(RMSE) , and mean absolute error (MAE) were used to evaluate the predictive performance of the four models. [ Results| The RF
model outperformed the other three models in predicting the effluent quality of the MF-CW system, achieving an R* of 0.945 9, an
RMSE of 4. 197 1 mg/L, and an MAE of 2. 805 9 mg/L. Compared to the BPNN, PSO-BPNN, and LSTM models, the R* of the RF
model increased by 37.17%, 16.82%, and 19.06%, respectively; RMSE decreased by 50.30%, 43.10%, and 45.78%,
respectively; and MAE decreased by 62.63%, 50.53%, and 53.47%, respectively. [ Conclusion ] The results confirm that the
ensemble learning method adopted by the RF model excels in handling complex nonlinear relationships in water quality data and

demonstrates strong noise resistance and robustness. This study provides important technical support for advancing the development and

application of magnetic field-enhanced constructed wetland technology in wastewater treatment.
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B1 MFEEBATIEMZEE
Fig. 1 Schematic of MF Enhanced Constructed Wetland Set-Up

x1 KEHE
Tab. 1 Water Quality Data

eIty BAME RME O CPIE bRERZE

pH 8.730 6. 560 7.814  0.413
ORP/mV 418.000 -187.300 -14.369  78.217
DO/(mg-L7") 5.810 1.430 3.058  1.076
EC/(mS+em™') 1197.000 264.000 723.551 225.925
T/C 25.120  17.200  21.756  1.697

#7K TP/ (mg-L™") 10. 898 0.936 4.397 2.424

HKBA/ (mg-L7")  98.061 9.139 47.403  18.754
K COD/(mg-L7™') 458.000  56.278  212.599  91.744
KRR/ (mg-L7')  58.439 0. 048 16.565  17.282
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Fig.2 Pearson Correlation Heatmap of Input Features
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Tab.2 Parameters of Model

Performance Evaluation

R? RMSE/ (mg-L™") MAE/(mg-L™")
f
VERS st A Y% RS VERS st A
BPNN 0.754 0 0.689 6 9.898 9 8.444 9 6.070 5 7.508 8
PSO-BPNN 0.859 9 0.809 7 6.5129 7.376 5 4.494 5 5.671 8
LSTM 0.802 3 0.794 5 7.648 2 7.740 2 5.609 7 6.029 7
RF 0.978 1 0.9459 2.5010 4.197 1 1.561 4 2.8059
2.2 WAL I T 17. 42% , [A]iF RMSE Fi1 MAE 1,45 %58 K i B A4
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Fig.3  Fitting Plots of Actual and Predicted Ammonia Nitrogen Values
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