
净水技术 2026,45(1):157-163 Water
 

Purification
 

Technology

􀤌􀤌􀤌􀤌􀤌􀤌􀤌􀤌􀤌􀤌

􀤌􀤌􀤌􀤌􀤌􀤌􀤌􀤌􀤌􀤌
􀦌 􀦌

􀦌􀦌AI 与智慧水务

罗虎,马荣.
 

基于机器学习的磁场强化型人工湿地水质的预测[J] .
 

净水技术,
 

2026,
 

45(1):
 

157-163.
LUO

 

H,
 

MA
 

R.
 

Prediction
 

of
 

water
 

quality
 

for
 

magnetic
 

field
 

enhanced
 

constructed
 

wetlands
 

based
 

on
 

machine
 

learning [ J] .
 

Water
 

Purification
 

Technology,
 

2026,
 

45(1):
 

157-163.

基于机器学习的磁场强化型人工湿地水质的预测
罗　 虎,马　 荣∗

(西南林业大学机械与交通学院,云南昆明　 650224)

摘　 要　 【目的】　 磁场强化人工湿地(MF-CW)作为绿色环保的污水处理技术,由于其在污水脱氮方面表现突出,近年来被

用于对生活污水进行处理,并展现出了显著的优势和应用潜力,机器学习( ML)技术通过模拟和分析水质中各种影响参数在

提高预测准确性方面表现出了极佳效果,为此通过 ML 建立一个高精度的模型用来预测 MF-CW 系统出水氨氮浓度,对于推进

其技术发展至关重要。 【方法】　 本文基于磁场强化人工湿地,以实际测量数据作为模型输入,然后构建不同的机器学习算法

模型进行对比,本文建立了 4 种机器学习算法模型[反向传播神经网络(BPNN)、粒子群算法优化 BPNN( PSO-BPNN)、长短期

记忆(LSTM)、随机森林(RF)]用来预测 MF-CW 系统的氨氮浓度,并使用 3 个性能指标[决定系数(R2 )、均方误差( RMSE)、
平均绝对误差(MAE)]对 4 种模型的预测性能进行评估。 【结果】　 RF 模型在预测 MF-CW 系统出水质量方面的准确性优于

其他 3 种模型,实现了 0. 945
 

9 的 R2 、4. 197
 

1
 

mg / L 的 RMSE 和 2. 805
 

9
 

mg / L 的 MAE,相较于 BPNN、PSO-BPNN 和 LSTM,RF
模型的 R2 分别提高了 37. 17%、 16. 82%、 19. 06%, RMSE 降低了 50. 30%、 43. 10%、 45. 78%, MAE 降低 62. 63%、 50. 53%、
53. 47%。 【结论】　 证实了 RF 模型采用的集成学习方法在处理复杂的水质非线性数据关系方面非常出色,并且具有很强的

抗噪性和鲁棒性,本文为推进磁场强化人工湿地污水处理技术发展应用提供了重要技术支持。
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Abstract　 [Objective] 　 The
 

magnetic
 

field-enhanced
 

constructed
 

wetland
 

( MF-CW)
 

is
 

an
 

environmentally
 

friendly
 

wastewater
 

treatment
 

technology.
 

Due
 

to
 

its
 

outstanding
 

performance
 

in
 

nitrogen
 

removal
 

of
 

wastewater,
 

it
 

has
 

been
 

increasingly
 

used
 

for
 

domestic
 

wastewater
 

treatment
 

in
 

recent
 

years,
 

demonstrating
 

significant
 

advantages
 

and
 

application
 

potential.
 

Machine
 

learning
 

( ML )
 

techniques
 

have
 

shown
 

excellent
 

effectiveness
 

in
 

improving
 

prediction
 

accuracy
 

by
 

simulating
 

and
 

analyzing
 

various
 

influencing
 

parameters
 

in
 

water
 

quality.
 

Therefore,
 

establishing
 

a
 

high-precision
 

ML
 

model
 

to
 

predict
 

the
 

effluent
 

ammonia
 

nitrogen
 

concentration
 

of
 

the
 

MF-CW
 

system
 

is
 

crucial
 

for
 

advancing
 

its
 

technological
 

development. [Methods] 　 Based
 

on
 

the
 

magnetic
 

field-enhanced
 

constructed
 

wetland
 

system
 

and
 

using
 

actual
 

measured
 

data
 

as
 

model
 

inputs,
 

this
 

paper
 

constructed
 

and
 

compared
 

different
 

machine
 

learning
 

algorithm
 

models.
 

Four
 

ML
 

models
 

were
 

developed,
 

including
 

backpropagation
 

neural
 

network
 

( BPNN),
 

particle
 

swarm
 

optimization-based
 

BPNN
 

(PSO-BPNN),
 

long
 

short-term
 

memory
 

(LSTM),
 

and
 

random
 

forest
 

(RF),
 

to
 

predict
 

the
 

ammonia
 

nitrogen
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concentration
 

of
 

the
 

MF-CW
 

system.
 

Three
 

performance
 

metrics
 

including
 

coefficient
 

of
 

determination
 

(R2 ),
 

root
 

mean
 

square
 

error
 

(RMSE),
 

and
 

mean
 

absolute
 

error
 

(MAE)
 

were
 

used
 

to
 

evaluate
 

the
 

predictive
 

performance
 

of
 

the
 

four
 

models. [Results]　 The
 

RF
 

model
 

outperformed
 

the
 

other
 

three
 

models
 

in
 

predicting
 

the
 

effluent
 

quality
 

of
 

the
 

MF-CW
 

system,
 

achieving
 

an
 

R2
 

of
 

0. 945
 

9,
 

an
 

RMSE
 

of
 

4. 197
 

1
 

mg / L,
 

and
 

an
 

MAE
 

of
 

2. 805
 

9
 

mg / L.
 

Compared
 

to
 

the
 

BPNN,
 

PSO-BPNN,
 

and
 

LSTM
 

models,
 

the
 

R2
 

of
 

the
 

RF
 

model
 

increased
 

by
 

37. 17%,
 

16. 82%,
 

and
 

19. 06%,
 

respectively;
 

RMSE
 

decreased
 

by
 

50. 30%,
 

43. 10%,
 

and
 

45. 78%,
 

respectively;
 

and
 

MAE
 

decreased
 

by
 

62. 63%,
 

50. 53%,
 

and
 

53. 47%,
 

respectively. [Conclusion] 　 The
 

results
 

confirm
 

that
 

the
 

ensemble
 

learning
 

method
  

adopted
 

by
 

the
 

RF
 

model
 

excels
 

in
 

handling
 

complex
 

nonlinear
 

relationships
 

in
 

water
 

quality
 

data
 

and
 

demonstrates
 

strong
 

noise
 

resistance
 

and
 

robustness.
 

This
 

study
 

provides
 

important
 

technical
 

support
 

for
 

advancing
 

the
 

development
 

and
 

application
 

of
 

magnetic
 

field-enhanced
 

constructed
 

wetland
 

technology
 

in
 

wastewater
 

treatment.
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　 　 人工湿地(CW)作为绿色环保的污水处理技术

逐渐被各个地区广泛应用[1] 。 然而,由于 CW 天然

存在着脱氮效率低、对污染物处理效果不佳等问题,
极大地限制了 CW 的开发和应用[2] ,为提高 CW 的

污水处理能力,人们通过磁场(MF)强化技术改善了

CW 污水处理工艺的长期性能,增强了污水的物理

化学特性,加快了物质交换和微生物吸收[3] 。 研

究[4] 表明:MF 能显著影响水质中氨氮的去除性能

并促进碳代谢和氮循环,研究该系统需要大量的水

质数据作为参考,然而传统的试验收集需要大量的

人力物力投入,为此通过建立一个高精度的模型来

预测该系统出水氨氮浓度变化,对推进 MF-CW 系

统的研究和治理至关重要。 机器学习( ML)技术的

发展在环境领域的应用展现了相当大的潜力[5] ,并
且在模拟和优化不同水质变量之间错综复杂的非线

性关系方面获得了很大的成功[6] 。 ML 算法模型被

应用于各种类型水质预测,Xu 等[7]使用反向传播神

经网络( BPNN) 构建了海洋牧场水质参数预测模

型,表明 BPNN 优秀的非线性映射能力和存在容易

陷入局部极值的特性; Yan 等[8] 采用粒子群优化

(PSO)算法优化 BPNN,对北京北海湖的水质进行

预测,表明该算法具有较好的收敛性和鲁棒性;
Huang 等[9]采用长短期记忆( LSTM)及其改进模型

对湖南省洞庭湖水质进行预测,展示了 LSTM 模型

在对水质进行时间序列预测方面发挥着重要作用,
Zanoni 等[10]使用随机森林( RF)算法建立了水温、
溶解氧(DO)、砷、硫酸盐和氯化物浓度以及电导率

(EC)的区域模型,结果表明:RF 在检测非线性关系

方面更加灵活和有效。 对 MF-CW 系统出水氨氮预

测方面的研究还未发展完善。 本文的目的是通过 4
种常见的 ML 算法[BPNN、粒子群优化 BPNN(PSO-

BPNN)、LSTM、RF]来模拟和预测 MF-CW 的出水水

质。 通过对模型的预测效果进行比较,以便寻找预

测效果最佳模型,相关人员可以根据预测数据对

MF-CW 系统实施更加科学的管理研究和优化措施。
1　 材料和方法

1. 1　 数据来源

　 　 本文在传统人工湿地的基础上加入了磁场强

化,构建磁场强化人工湿地( MF-CW)系统,系统装

置如图 1 所示。 系统尺寸为 40
 

cm×30
 

cm×30
 

cm,
系统分为 2 个单元:生物降解单元和磁场强化单元,
生物降解单元中放置了 28

 

cm 生物膜球(直径为

50
 

mm)。 磁场强化单元基质配置由左到右填充:
26

 

cm 的砾石层(直径为 4 ~ 6
 

mm)和 260
 

cm 的浮水

陶粒层(直径为 3 ~ 4
 

mm),磁板尺寸厚度为 0. 5
 

cm,
宽度为 28

 

cm,高度为 28
 

cm,两磁板间距为 120
 

cm,
磁场强度设置为 30

 

mT,并且种植有茭草。 污水来

源于西南林业大学污水处理厂,其水质为西南林业

大学生活污水。 MF-CW 系统污水运行采用连续循

环运行模式。
装置稳定运行后,设置的水力停留时间( HRT)

为 24、48、72、96、144
 

h。 每 6
 

d 更换系统装置的进

水,收集水样时间为 2023 年 4 月 1 日—2024 年 3 月

16 日,共计 350
 

d,因装置维修造成了部分数据缺

失,共收集有效数据 330 组,监测数据主要有以下几

个指标:pH、氧化还原电位 ( ORP )、 DO、 EC、温度

(T)、总磷( TP)、氨氮、化学需氧量( COD),其水质

数据如表 1 所示。 由于该套装置污水来源于校园污

水,学校人数变化和降雨等因素均会造成污水浓度

波动较大等原因,原始数据按照 70%训练集和 30%
测试集的比例划分。
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图 1　 MF 强化型人工湿地装置

Fig. 1　 Schematic
 

of
 

MF
 

Enhanced
 

Constructed
 

Wetland
 

Set-Up
表 1　 水质数据

Tab. 1　 Water
 

Quality
 

Data
指标 最大值 最小值 平均值 标准偏差

pH 值 8. 730 6. 560 7. 814 0. 413

ORP / mV 418. 000 -187. 300 -14. 369 78. 217

DO / (mg·L-1 ) 5. 810 1. 430 3. 058 1. 076

EC / (mS·cm-1 ) 1
 

197. 000 264. 000 723. 551 225. 925

T / ℃ 25. 120 17. 200 21. 756 1. 697

进水 TP / (mg·L-1 ) 10. 898 0. 936 4. 397 2. 424

进水氨氮 / (mg·L-1 ) 98. 061 9. 139 47. 403 18. 754

进水 COD / (mg·L-1 ) 458. 000 56. 278 212. 599 91. 744

出水氨氮 / (mg·L-1 ) 58. 439 0. 048 16. 565 17. 282

1. 2　 相关性分析

　 　 相关性分析有助于理解变量之间的关系,确定
有利于改善数据的模式和趋势,以及评估各种输入

属性,通过相关性分析筛选模型输入指标,可有效降

低模型的过拟合风险和提升训练效率[11] ,确保模型
的预测准确性。 为此本文针对氨氮出水浓度的数据

进行皮尔逊相关性分析,筛选与其相关性较强的指

标作为模型输入指标(P<0. 01),其相关性热图如图

2 所示。 根据相关性分析结果,本文选取以下 8 个

水质指标作为模型的输入参数,分别为进水 TP 浓

度、进水氨氮浓度、进水 COD 浓度、HRT、ORP、DO、
EC、T。
1. 3　 原始数据预处理

　 　 在对原始数据的预处理中,为了减少由于输入

　 注:∗指代相关性系数 P<0. 05,∗∗和∗∗∗分别代表相关性系数

P<0. 02 和 P<0. 01。

图 2　 输入特征皮尔逊相关性热图

Fig. 2　 Pearson
 

Correlation
 

Heatmap
 

of
 

Input
 

Features

和输出数据之间的值存在巨大差异而引起的误差,
数据集使用规定的方程进行了归一化,将数据线性

缩放到 0 ~ 1。 归一化如式(1)所示。

x′ =
x - xmin

xmax - xmin
(1)

其中:x′ ———缩放值;
x ———原始值;
xmax 和 xmin ———数据序列的最大值和最

小值。
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1. 4　 预测模型

1. 4. 1　 LSTM
　 　 LSTM 神经网络作为针对序列预测而设计的改

进模型,通过将门控函数与状态动态学相结合来解

决传统 RNN 的消失梯度问题[12] 。 与简单的 RNN
相比,LSTM 引入了更复杂的单元结构。 它有 3 个

主门:输入门、忘记门和输出门,以及帮助保存长期

信息的细胞状态和保存短期记忆的隐藏状态

组成[13] 。
1. 4. 2　 RF
　 　 决策树(DT)算法通过对目标变量采用决策规

则来自动细分数据集,RF 算法是一种基于 DT 的

ML 算法。 RF 生成大量独立树,并采用投票计算最

终预测。 同样,RF 衡量每个特征对预测的相对重要

性,这是通过最小化森林中所有树木的均方误差来

估计的[14] 。 RF 对异常值不太敏感,并且考虑到特

征和引导重采样的选择过程的随机性,通常能提供

更好的概括性能。 此外,RF 之所以有吸引力,是因

为它能够利用数据之间的非线性关系[10] 。
1. 4. 3　 BPNN
　 　 BPNN 具有从输入因素中提取非线性关系的能

力,具有很高的可解释性。 BPNN 从输入到输出由 3
层组成,分别为输入层、隐藏层和输出层[15] 。 BPNN
模型特点是采用模拟预测前向推进、误差修正后向

传播的过程分离运行方式,根据预测输出值与实际

值之间误差减小的方向,逐层修正节点与神经元之

间的连接权值和阈值,保证网络仿真和预测精度的

不断提高[16] 。
1. 4. 4　 PSO-BPNN
　 　 PSO 算法是在研究鸟群觅食行为中发现的一种

随机搜索算法,它通过模仿鸟群成员之间的相互协

作和竞争来实现全局优化。 在 PSO 算法中,每个个

体都被视为一个粒子[17] 。 当粒子在预条件空间中

运动时,它会根据获得的个体和全局极端不断改变

自己的位置,然后通过不断修正自己的位置来更新

解,从而在预条件空间中寻找最佳值[18] ,因此本文

采用 PSO 算法来优化传统 BPNN。
1. 5　 模型性能评估

　 　 在此次研究中,我们通过软件 MATLAB
 

2019a
中构建了 BPNN、 PSO-BPNN、 LSTM、 RF 模型。 此

外,为了更清晰地观察上述模型的预测效果,本文通

过相对均方根误差(RMSE)、决定系数(R2 )和平均

绝对误差(MAE)3 个性能评估指标对模型性能进行

评估。 3 种指标计算分别如式(2) ~式(4)。

RMSE = 1
n ∑

n

t = 1
(yact

t - ypre
t ) 2 (2)

R2 = 1 -
∑ n

t = 1
(yact

t - ypre
t ) 2

∑ n
t = 1

(yact
t - y -act

t ) 2
(3)

MAE = 1
n ∑

n

t = 1
| yact

t - ypre
t | (4)

其中:RMSE———RMSE 值,mg / L;
MAE———MAE 值,mg / L;
n———样本数量;
yact
t ———实际值;
ypre
t ———预测值;
y -act
t ———实际数据值的平均值。

2　 结果与讨论
2. 1　 测试集的预测性能

　 　 通过比较 R2 、RMSE 和 MAE,可以更加直观地

看出 4 种模型的可预测性强度。 4 种算法模型的

预测性能如表 2 所示。 由表 2 可知,不同类型的算

法模型具有不同的预测效果。 BPNN 容易产生局

部最小值和收敛速度慢等缺点,导致模型效果不

佳,其测试集中对出水氨氮浓度的预测 R2 值小于

0. 7。 为提高 BPNN 预测精度,本文采用粒子群算

法来优化 BPNN,相比于传统的 BPNN,经过粒子

群算法优化后的 BPNN 预测精度得到了很大的提

高,对污染物预测 R2 值提升到了 0. 8 以上,提升

效果很明显。 相比于单一的 BPNN 模型,作为时

间序列模型中的经典算法模型,LSTM 模型的预测

效果要好一些,对污染物的 R2 值达到 0. 794
 

5,
LSTM 因继承了 RNN 模型的记忆性、参数共享性

和图灵完全性等特点,能够高效学习序列的非线

性特征,这对于具有长期序列依赖性问题的数据

非常有效[19] 。 虽然预测效果有所改进,但这还远

不能达到所需的预测精度。 RF 在所有指标的预

测精度均优于其他模型,由表 2 可知,与其他 3 种

模型相比,RF 模型的 R2 值在 0. 9 以上,预测精度

远远超过其他模型。 RF 模型性能最佳的原因可

能是 RF 是一种用于回归应用的集成学习方法,其
中预测是通过聚集多个决策树的输出来得出的,
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这种方法对于处理非线性关系和具有复杂交互作 用的水质数据集特别有效[20] 。
表 2　 模型性能评估指标参数

Tab. 2　 Parameters
 

of
 

Model
 

Performance
 

Evaluation
 

模型
R2 RMSE / (mg·L-1 ) MAE / (mg·L-1 )

训练集 测试集 训练集 测试集 训练集 测试集

BPNN 0. 754
 

0 0. 689
 

6 9. 898
 

9 8. 444
 

9 6. 070
 

5 7. 508
 

8

PSO-BPNN 0. 859
 

9 0. 809
 

7 6. 512
 

9 7. 376
 

5 4. 494
 

5 5. 671
 

8

LSTM 0. 802
 

3 0. 794
 

5 7. 648
 

2 7. 740
 

2 5. 609
 

7 6. 029
 

7

RF 0. 978
 

1 0. 945
 

9 2. 501
 

0 4. 197
 

1 1. 561
 

4 2. 805
 

9

图 3　 氨氮真实值与预测值拟合图

Fig. 3　 Fitting
 

Plots
 

of
 

Actual
 

and
 

Predicted
 

Ammonia
 

Nitrogen
 

Values

2. 2　 模型对比分析

　 　 4 种机器算法模型对 MF-CW 系统出水氨氮的

预测效果如图 3 所示。 图 3 中显示了出水氨氮浓度

的预测数据和真实数据,4 种模型中 BPNN 预测效

果最差,训练集 R2 值为 0. 754
 

0、测试集 R2 值为

0. 689
 

6;训练集 RMSE 值为 9. 898
 

9
 

mg / L、测试集

RMSE 值为 8. 444
 

9
 

mg / L;训练集 MAE 值为 6. 070
 

5
 

mg / L、测试集 MAE 值为 7. 508
 

8
 

mg / L。 虽然该模

型的拟合效果最差,但 BPNN 作为基于误差反向传

播算法训练的多层前馈网络,已经被广泛应用于各

种水质预测研究[21] 。 基于 BPNN 模型,PSO-BPNN
模型无论训练集还是测试集的拟合精度都大幅增

长,其中 BPNN 训练集的 R2 在经过粒子群算法优化

后由 0. 754
 

0 以下增长至 0. 859
 

9 以上,增长了

14. 05%;测试集同样有较大提升,相较于 BPNN 增

加了 17. 42%,同时 RMSE 和 MAE 也有较大幅度的

下降,RMSE 下降了 12. 65%,MAE 下降了 24. 46%。
PSO 作为一种基于随机值的智能进化算法,通过连

续迭代找到最优解,并且 PSO 通过群体搜索机制,
在全局空间内优化 BPNN 的初始权值和阈值,显著

降低了 BPNN 陷入局部最优的风险,提升了预测精

度[22] 。 LSTM 模型相较于 BPNN 模型预测精度有了

略微增加,测试集 R2 值增长了 15. 21%,但相较于

PSO-BPNN 模型,LSTM 模型预测精度就略差,无论

在训练集还是测试集中的表现均不如 PSO-BPNN
模型。 LSTM 作为一种能解决梯度消失或爆炸问题

的变体[9] ,分别通过 3 种类型的门负责控制信息

流,输入门调节新信息的流动,而忘记门确定应该从

每个存储单元中丢弃哪些信息,最后,输出门确定应

该将哪些信息发送到 LSTM 的输出[23] 。 正是因为
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这种特性使 LSTM 模型在捕获顺序数据中的长期依

赖关系并准确预测长时间的数据方面优于其他方

法,这是 LSTM 模型用于各种水质数据预测的关键

原因[13,24] 。 导致 LSTM 模型预测效果不佳的原因可

能是 LSTM 可以考虑过去结果对现在的影响,这在

时间序列问题中发挥着重要作用,但在本文中将其

应用于对水质数据的回归预测,造成收敛速度慢、最
终收敛的损失值较高等问题,使得模型的预测精度

降低。
结合图 3 的拟合结果与表 2 的指标参数来看,

RF 模型无论是训练集还是测试集的 R2、RMSE 和

MAE 都说明 RF 模型的拟合精确度优于传统的

BPNN 模型、PSO-BNN 模型和 LSTM 模型。 RF 模型

具有这么高的预测精度,可能因为与其他算法相比,
RF 是一种数据驱动的非线性建模工具,可以直接处

理多维数据,无需降维或特征选择,并且完全数据驱

动[25] 。 4 种算法模型中 RF 模型中对氨氮浓度预测

中训练集 R2 为 0. 978
 

1、测试集 R2 为 0. 945
 

9、相较

于效果最差的 BPNN 模型,训练集 R2 和测试集 R2

分别提升了 29. 72%和 37. 17%。 相对于 RF 模型对

R2 值的提升效果,其对 RMSE 和 MAE 值的降低作

用更加突出。 RF 模型的训练集 RMSE 为 2. 501
 

0
 

mg / L、测试集 RMSE 为 4. 197
 

1
 

mg / L,与 BPNN 模

型对比分别降低了 74. 73%和 50. 30%。 RF 模型的

训练集 MAE 为 1. 561
 

4
 

mg / L、 测试集 MAE 为

2. 805
 

9
 

mg / L, 与 BPNN 模型对比分别降低了

74. 28%和 62. 63%。 RF 模型测试集的 R2 相较于

PSO-BPNN 和 LSTM, 分 别 提 高 了 16. 82% 和

19. 06%,RMSE 降低了 43. 10%和 45. 78%,MAE 降

低了 50. 53%和 53. 47%。 RF 模型的 R2 值最接近于

1,并且 RMSE 和 MAE 值均最小,表明该模型的预测

值与水质真实数据很好地吻合。 此外,由图 3(d)中

测试集中真实值与预测值的拟合效果可知,预测值

在波峰和波谷处的变化与真实值的变化趋势保持高

度一致,更适合于用来建立 MF-CW 系统出水水质

的预测模型。 RF 模型作为基于集成学习的回归方

法,通过构建多个决策树并集成它们的预测,RF 模

型的最终预测作为所有树预测的平均值,虽然平均

值本身对极端值比较敏感,但 RF 平均的是许多树

的预测值,而不是原始数据值,通过多次平均可平滑

预测结果。 RF 并不试图去“修正” 极端值,而是通

过“集体决策”来削弱极端值的影响力,将数据中极

端值对模型的影响分散化和稀释化,因此其具有很

强的抗噪性和鲁棒性[26] 。 研究结果表明:RF 模型

在处理复杂的水质非线性数据关系方面非常有效,
这使得它非常适合推进 MF-CW 系统实际应用研究

进程,同时这项工作的结果进一步验证了集成学习

方法在污水处理中的研究潜力。
3　 结论
　 　 随着数据分析技术的持续成熟,推动了 ML 技

术在环境科学领域的广泛应用。 本文中通过 ML 算

法模型对 MF-CW 系统出水氨氮预测,得出了 3 个

主要研究结论:(1)通过对构建的 4 种预测模型性

能评估指标的比较,RF 模型的预测精度及与模型拟

合程度均优于其他 3 种模型,证明该模型的强鲁棒

性和抗噪性能够为 MF-CW 系统预测出水提供较准

确的预测结果;(2)PSO 算法可以改进传统的 BP 模

型,PSO 通过群体搜索机制可以减少 BPNN 陷入局

部最优等问题提高了模型的预测精度;(3)本文构

建的 ML 模型,实现了良好的水质参数预测性能,通
过 RF 算法模型可以大幅减少 MF-CW 系统在试验

收集数据的过程中浪费大量资源投入,通过 ML 进

行水质预测的方法,对推动 MF-CW 系统研究发展

有着重要作用,同时也为其他水质参数预测提供了

新思路。
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