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多维度的水厂日供水量规律性评价方法
张　 新,翁晓姚∗

(上海城投水务<集团>有限公司,上海　 200082)

摘　 要　 【目的】　 在城市现代化建设的进程中,供水系统的复杂特征和动态特征日益显现,水厂的日供水量作为供水系统的

重要指标且受到多种因素的影响,可有效反映这些特征。 【方法】 　 本文从时域、频域及复杂性 3 个角度,提出了一种多维度

量化评价水厂日供水量规律性和非规律性的方法,推动日供水量预测模型选择、建立的透明化。 规律性量化评价方面,包含

时域分析中的自相关系数绝对值的算术平均值( MAAC)、变异性补( 1-CV)以及基于季节与趋势分解( STL)法的趋势强度

(TS)与季节强度(SS)、趋势季节强度与噪声强度之比(R0 )4 项指标;非规律性量化评价方法,包含时域分析中基于 STL 法的

噪声强度(NS)、频域分析中基于功率谱的归一化谱熵(Hnorm )以及复杂性分析中的归一化样本熵( NSE)和归一化赫斯特指数

(HE,
 

norm )4 项指标。 【结果】　 进而,以上海中心城区浦西区域的 10 家水厂日供水量为研究对象,基于供水运行规律性分析和

相关研究,设置了自相关分析、STL 分解和样本熵的相关参数后,分别计算规律性指标、非规律性指标,然后通过算术平均值得

到规律性总得分、非规律性总得分。 评价结果显示,本研究提出方法评价的 10 家水厂的供水规律性和不规律性得分可相互佐

证。 【结论】　 结合评价结果,选用广义自回归条件异方差(GARCH)模型和极端梯度提升( XGBoost)模型开展日水量预测与

规律性分析;针对高规律性、中规律性、低规律性和复杂性 4 类水厂,推荐水量预测模型,辅助提高了水量预测的可解释性。
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Abstract　 [Objective]　 In
 

the
 

process
 

of
 

urban
 

modernization,
 

the
 

complexity
 

and
 

dynamic
 

characteristics
 

of
 

water
 

supply
 

systems
 

are
 

becoming
 

increasingly
 

evident,
 

and
 

the
 

daily
 

water
 

supply
 

volume
 

of
 

water
 

treatment
 

plants(WTPs),
 

as
 

an
 

important
 

indicator
 

of
 

the
 

water
 

supply
 

system,
 

can
 

effectively
 

reflect
 

the
 

overall
 

characteristics. [Methods] 　 This
 

paper
 

proposed
 

a
 

multi-dimensional
 

quantitative
 

evaluation
 

method
  

from
 

temporal,
 

frequency,
 

and
 

complexity
 

domains
 

to
 

assess
 

both
 

regularity
 

and
 

irregularities
 

in
 

daily
 

water
 

supply
 

patterns
 

of
 

WTPs,
 

while
 

simultaneously
 

enhancing
 

the
 

transparency
 

in
 

model
 

selection
 

and
 

development
 

for
 

daily
 

water
 

supply
 

prediction
 

through
 

systematic
 

regularity
 

quantification.
 

In
 

terms
 

of
 

regularity
 

quantification,
 

it
 

included
 

four
 

indices
 

in
 

time
 

domain
 

analysis:
 

the
 

mean
 

absolute
 

value
 

of
 

autocorrelation
 

coefficients
 

( MAAC),
 

the
 

complement
 

of
 

variability
 

( 1-CV),
 

and
 

two
 

indices
 

based
 

on
 

seasonal-trend
 

decomposition
 

procedure
 

using
 

LOESS(STL)
 

method:
 

the
 

trend
 

strength
 

and
 

seasonality
 

strength
 

(TS+
SS),

 

and
 

the
 

ratio
 

of
 

trend
 

seasonality
 

strength
 

to
 

noise
 

strength
 

(R0 ).
 

For
 

irregularity
 

quantification,
 

it
 

included
 

four
 

indices:
 

noise
 

strength
 

(NS)
 

based
 

on
 

STL
 

in
 

time
 

domain
 

analysis,
 

normalized
 

spectral
 

entropy
 

(Hnorm )
 

based
 

on
 

power
 

spectrum
 

in
 

frequency
 

domain
 

analysis,
 

and
 

two
 

indices
 

in
 

complexity
 

analysis:
 

normalized
 

sample
 

entropy
 

(NSE)
 

and
 

normalized
 

Hurst
 

exponent
 

(HE,
 

norm ).
[Results]　 Subsequently,

 

taking
 

the
 

daily
 

water
 

supply
 

volumes
 

of
 

10
 

WTPs
 

in
 

the
 

Puxi
 

area
 

of
 

Shanghai's
 

central
 

urban
 

district
 

as
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the
 

research
 

object,
 

based
 

on
 

the
 

analysis
 

of
 

water
 

supply
 

operation
 

regularity
 

and
 

related
 

research,
 

the
 

relevant
 

parameters
 

for
 

autocorrelation
 

analysis,
 

STL
 

decomposition,
 

and
 

sample
 

entropy
 

were
 

set.
 

Regularity
 

and
 

irregularity
 

indices
 

were
 

calculated,
 

and
 

then
 

the
 

total
 

scores
 

for
 

regularity
 

and
 

irregularity
 

were
 

obtained
 

through
 

arithmetic
 

mean,
 

conducting
 

a
 

quantification
 

evaluation
 

of
 

the
 

regularity
 

and
 

irregularity
 

of
 

daily
 

water
 

supply
 

volumes.
 

The
 

evaluation
 

results
  

demonstrated
 

that
 

the
 

regularity
 

and
 

irregularity
 

scores
 

of
 

10
 

WTPs
 

assessed
 

by
 

the
 

method
  

proposed
 

in
 

this
 

study
 

for
 

different
 

water
 

treatment
 

plants
 

can
 

mutually
 

corroborate
 

each
 

other.
[Conclusion]　 Based

 

on
 

these
 

evaluation
 

outcomes,
 

GARCH
 

and
 

XGBoost
 

models
 

are
 

subsequently
 

employed
 

to
 

conduct
 

daily
 

water
 

demand
 

prediction
 

and
 

regularity
 

analysis.
 

For
 

WTPs
 

categorized
 

into
 

four
 

types-high
 

regularity,
 

medium
 

regularity,
 

low
 

regularity,
 

and
 

complexity-specific
 

water
 

demand
 

prediction
 

models
 

are
 

recommended.
 

This
 

method
 

ological
 

framework
 

can
 

effectively
 

enhance
 

the
 

interpretability
 

of
 

water
 

demand
 

forecasting.
Keywords　 water
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　 　 供水系统作为韧性城市建设的关键一环,近年

来正面临着前所未有的挑战[1] 。 在现代城市化进

程中,供水系统的复杂性和动态特征日益显现。 水

厂的日供水量作为供水系统的重要指标,受到多种

因素的影响;比如城市供水量受新冠疫情封控影响

较大,下降时间和封控措施的实施同步,日均供水量

的损失约为正常情况下的 7%[2] ,其他因素还包括

自然环境变化、社会经济发展水平、人口增长以及供

水管理调度策略等[3] 。 在供水量预测领域,近年研

究[4-6]主要聚焦提高预测精度为目标的混合模型和

深度学习应用方面,但对水量预测模型落地应用时,
面临的模型选择、透明度不高、可解释性不足等方面

问题研究较少。
本研究通过综合时域、频域和复杂性分析方法,

提出了一种针对水厂日供水量的规律性、非规律性

的多维度分析评价方法。 在对上海中心城区浦西区

域内 10 家水厂多年的日供水量数据进行评价分析

的基础上,选用广义自回归条件异方差(GARCH)模

型和极端梯度提升(XGBoost)模型开展日水量预测

与规律性分析;针对高规律性、中规律性、低规律性

和复杂性水厂,推荐了水量预测模型。
本评价方法可作为水厂日供水量预测模型选择

的前置分析工具,通过量化时间序列的规律性特征

(趋势强度、周期稳定性等)和非规律性特征(随机

波动、混沌特性等),辅助为不同特性的水厂匹配预

测模型,从而提升预测效率,提高预测工作的可解释

性,提升供水系统运营管理的科学化和精细化

水平[7] 。

1　 研究方法
　 　 水厂供应量作为典型的时间序列数据,可从时

域、频域 2 个角度开展分析。 同时,水厂供水作为供

水系统中的一个重要环节,其水厂出水量的时间序

列数据包含了用水、运维、调度及异常处理等工况的

综合信息,具备模式多样性的特征。 因此,也可从复

杂性角度分析。
本研究在水厂日供水量时域、频域和复杂性分

析的基础上,提出了规律性、非规律性指标分析框

架,如图 1 所示。
1. 1　 时域分析

1. 1. 1　 统计分析

1)变异性指标

变异系数(CV)是衡量时间序列相对变异程度

的指标,可直接比较具有不同单位或量级的时间序

列。 在应用中,CV 的值越高,意味着时间序列的波

动性或不确定性越大。 相反,CV 值越低,则表明时

间序列数据越稳定,变异较小。
本研究中应用 1-CV 作为变异性补,重点描述

水厂出水量时间序列中的稳定性、确定性部分。
2)自相关性指标

自相关分析是通过计算时间序列滞后值之间的

自相关函数,量化时间序列的相关性,揭示其中的周

期性、趋势性和随机性[7] 。 为了量化时间序列整体

自相关强度,本研究采用自相关系数绝对值的算术

平均值(MAAC),在式中表示为 MACC,如式(1)。

MACC = 1
K ∑

K

k = 1
| ρk | (1)

其中:ρk ———滞后 k 的自相关系数;
K———自相关系数数量;
MACC———自相关系数绝对值的算术平

均值。
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图 1　 规律性与非规律性分析框架

Fig. 1　 Analysis
 

Framework
 

of
 

Regularity
 

and
 

Irregularity
 

MAAC 越高,表明时间序列中存在更显著的趋势

或周期性成分。
1. 1. 2　 STL 分解

　 　 STL 广泛用于非平稳时间序列的趋势和季节性

模式分析[8] ,其利用局部回归( LOESS)对时间序列

逐步分解为 3 部分:趋势、季节性和残差,可揭示时

间序列中的 TS 和 SS[9] 。
1)

 

TS 与 SS 指标

基于 STL 分解将时间序列拆解为趋势、季节性

成分和残差成分后,通过计算趋势分项、季节性成分

占总方差的比例,可得出 TS、SS,在式中分别表示为

TS、SS 如式(2) ~式(3)。

TS =
Var(Tt)
Var(X t)

(2)

SS =
Var(St)
Var(X t)

(3)

其中:TS———趋势强度;
SS———季节强度;
Var———方差;
Tt———STL 分解 X t 得到的趋势时间序列

数据;
X t———总体时间序列数据;
St———STL 分解 X t 得到的季节时间序列

数据。
两者的数值在[0,1],值越高,分别表明趋势成

分、季节性成分的占比越大。 趋势强度高的序列通

常适合长期分析,而季节性强度高的序列适合周期

性预测。 两者均体现了时间序列信号的规律性。
2)R0

R0 用于量化趋势和季节性等规律性部分对随

机波动的影响,如式(4)。

R0 =
Var(Tt + St)

Var(R t)
(4)

其中:R t———STL 分解 X t 得到的噪声时间序列

数据。
R0 值越高,表明趋势和季节性等规律性部分是

时间序列变化的主要驱动力;反之,随机波动发挥的

作用就越大。
为了便于比较,按式(5)将 R0 进行归一化。

R0 =
R0

1 + R0
(5)

3)NS 指标

NS 是衡量随机波动成分对时间序列总变化贡

献程度的重要指标,如式(6)。

NS =
Var(R t)
Var(X t)

(6)
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其中:NS———噪声强度。
NS 值在[0,1],值越高,表明时间序列的随机性

越高,规律性越差。
1. 2　 频域分析与 Hnorm

　 　 频域分析利用傅里叶变换将时间序列从时间域

转化为频域,可揭示时间序列中周期性信号的频率

分布。 谱熵是根据香农原理和信息熵原理计算时间

序列信号的频谱功率分布和规律性[10] ,如式(7) ~
式(8)。

Hnorm =
- ∑

i
P̂( fi)log[ P̂( fi)]

logN
(7)

P̂( fi) =
P( fi)

∑
j
P( f j)

(8)

其中:P( fi)———频率 f 对应的功率谱密度;

P̂( fi)———归一化功率谱密度;
N———频率点数。

归一化后的谱熵值为[0,
 

1]。 Hnorm 越接近 0,
表明时间序列对应频谱中某些频率分量占主导地

位,此时间序列具有较强的周期性;Hnorm 越接近 1
则表明频率分布均匀,序列呈现随机性。
1. 3　 复杂性分析

　 　 1)样本熵(SE)
随着非线性理论的发展,20 世纪 90 年代初,

Pincus 首次提出用近似熵计算时间序列复杂度,并
在各领域得到广泛应用。 有研究者[11] 对近似熵进

行修正,提出 SE,旨在降低近似熵的误差,是一种与

近似熵类似但精度更好的方法。 SE 可通过评估供

水系统中相关时间序列中相似模式的出现概率,量
化时间序列的规则性和复杂性。 SE 值越低,时间序

列自我相似性越高,产生新模式的概率越低,时间序

列越简单;反之,时间序列自我相似性越低,产生新

模式的概率越高,时间序列越复杂[10] 。
为了对不同长度或尺度的时间序列进行比较,

将 SE 进行归一化得到归一化样本熵( NSE),在式

中表示为 NSE,定义如式(9)。

NSE =
SE(m,r,N)

logN
(9)

其中:SE(m,r,N)———样本熵;
logN———样本熵可能达到的最大值;

m———嵌入维度,用于定义局部子序列

模式;
r———时间序列标准差的比例,用于判断

m 维向量是否相似。 NSE 的值限定在

[0,1]。
2)HE,norm

赫斯特指数(HE )是时间序列分析中用于衡量

依赖性和持久性的关键指标,其可应用于水资源中

的复杂性和随机过程的动态特性研究[12] 。 HE 基于

时间序列的分形性质,通过研究时间序列自相似性,
来评估系统的稳定性和调节能力。

HE 与 0. 5 的偏离程度,可用于评估时间序列

的随机性与确定性特性,本研究通过计算其与 0. 5
的距离并归一化形成 HE,norm, 定义如式 ( 10 ) ~
式(11) 。

HE,norm = 1 -| HE - 0. 5 | × 2 (10)

HE = log(R / S)
logL

(11)

其中:R / S———时间序列的极差与标准差之比;
HE,norm———归一化后的赫斯特指数;
HE———赫斯特指数;
L———滞后长度。

HE,norm 在[0,1]。 当 HE = 0. 5 时,HE,norm 的值为

1,表明序列接近随机性。 HE 接近 0 或 1 时,HE,norm

的值趋近于 0,表明序列中包含显著的强持久性

特征。
1. 4　 规律性、非规律性指标

　 　 基于上述时域分析、频域分析和复杂性分析所形

成的规律性、非规律性指标,分别计算算术平均值

(MAAC),可形成规律性得分(RS)、非规律性得分

(IS),在式中分别表示为 RS、IS,如式(12)和式(13)。

RS =
(1 - CV) + MACC + (TS + SS) + R0

4
(12)

IS =
NS + Hnorm + NSE + HE,norm

4
(13)

其中:RS———规律性得分;
IS———非规律性得分;
CV———变异系数。

2　 实例研究
2. 1　 实例概况

　 　 针对上海中心城区浦西供水服务区域内 10 家
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水厂 2017 年 1 月 1 日—2024 年 6 月 29 日的日供水

量,开展规律性、非规律性量化评价。 从 10 家水厂

日供水量箱线图(图 2)中可以观察到,不同水厂的

水量分布具有显著差异。 如标记为 C、Y2 和 T 的水

厂显示出较高的中位数和较宽的四分位距,表明这

些水厂的日供水量较大且波动较大。 相反,标记为

L 和 W 的水厂则显示出较低的水量中位数和较窄

的四分位距,表明其日供水量较小且相对稳定。
规律性与波动性之间既有区别,又有联系。

日供水量波动大的水厂,可能受趋势、季节等规律

性影响因素,其数值变化范围虽然较大,但规律性

可能较强。 日供水量波动较小的水厂,可能因调

度措施、维修等非规律性因素影响,导致其非规律

性较强。

图 2　 浦西供水服务区域 10 家水厂水量箱线图

Fig. 2　 Boxplot
 

of
 

Water
 

Volume
 

for
 

10
 

WTPs
 

in
 

Puxi
 

Water
 

Supply
 

Service
 

Area

　 　 水厂日供水量主要受 3 个关键运营环节的综合

影响:水量需求、水厂运行状况以及调度方式。 这 3
个因素既包含了规律性的要素,也包含了非规律性

的要素。
规律性要素主要与水量需求的变化特征相关,

包括季节性波动和趋势的稳定性。 例如,夏季高温

天气通常会导致用水需求显著增加,而冬季则相对

减少,总体呈现年度季节周期性变化。 此外,水厂日

供水量还可能受到经济发展水平、城市化进程以及

人口变化等长期趋势的影响。
非规律性要素主要指一些偶发性或不可预测的

因素。 这类因素包括节假日期间水量的异常波动,
以及大型公众活动可能导致区域短时间内用水需求

急剧上升;水厂运行的突发情况,例如设备故障导致

的供水能力下降;调度人员的主观调度偏好以及监

测设备或网络传输的异常等。
这些规律性和非规律性要素的影响都包含在水

量的时间序列中。
2. 2　 规律性分析评价

　 　 时域分析中的自相关性、STL 分解和复杂性分

析中的相关初始参数,需要结合供水业务相关运行

规律及历史相关研究成果来设置。
水费征收以月度为账单周期,促使用户行为及

供水运行管理存在明显的月度周期,其代表了供水

运营的有效周期,可作为自相关分析中捕捉短期序

列依赖性和周期模式的合适尺度;因此,设置自相关

性分析的滞后 k= 30,从而确保自相关函数可有效捕

捉月度行为模式。
由于需水量受气候周期(如季节性温度变化和

降水模式) 以及年度社会和经济活动的重大影响,
在日供水量 STL 分解中选择季节性周期为 365

 

d,
可确保 STL 分解在保持趋势估算和残差分析完整

性的同时,有效地分离出年度季节性。
复杂性分析的 SE(m,

 

r,
 

N)计算中,结合相关

研究[13-14] ,为能够有效捕捉时间序列中的复杂性,
同时避免过高维度带来的计算复杂性,本研究选

择嵌入维度 m = 2;r 的设置与时间序列的标准差有

关,为获得最佳的区分度和敏感性,本研究选择 r=
0. 2。

经上述参数初始设置,规律性指标、非规律性指

标各分项计算结果和 RS、IS,如图 3 和图 4 以及表 1
所示。
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图 3　 浦西 10 家水厂规律性、非规律性指标雷达分布示意图

Fig. 3　 Radar
 

Plot
 

of
 

Regularity
  

and
 

Irregularity
 

Indices
 

for
 

10
 

WTPs
 

in
 

Puxi

图 4　 规律性、非规律得分示意图

Fig. 4　 Schematic
 

Diagram
 

of
 

Regularity
 

and
 

Irregularity
 

Scores

　 　 由图 3 和图 4 以及表 1 可知,总体规律性指标

普遍高于不规律性指标,说明各水厂总体上表现出

较强的规律性,符合水厂供水以规律性较强的需求

侧为主,以调度调节、水厂及监测设备运行异常为辅

的总体情况。 同时,不同水厂在规律性和不规律性

特征上,表现出较大的差异。 由图 3 可知,10 家水

厂 MAAC 均呈现较高水平,特别是 X 和 Y2 水厂,表

明供水模式具有显著的时间依赖性;1-CV 反映了供

水量的整体稳定性,其中 X 和 Y2 水厂表现最为突

出;R0 和 TS+SS 的分布形态,说明 10 家水厂在长期

变化特征上具有一定的一致性。 图 3 的 4 个不规律

性指标,10 家水厂的 Hnorm 均普遍较高(0. 4 ~ 0. 7),
表明供水量在频域上具有显著的复杂性;NS 表现出

明显的差异性,反映了 10 家水厂供水波动的不同特
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　 　 　 表 1　 浦西 10 家水厂规律性指标、非规律性指标结果明细
Tab. 1　 Detailed

 

Calculation
 

Results
 

of
 

Regular
 

and
 

Irregular
 

Indices
 

for
 

10
 

WTPs
 

in
 

Puxi

水厂 1-CV MAAC TS+SS R0 RS NS Hnorm NSE HE,norm IS

X 0. 730 0. 852 0. 821 0. 899 0. 826 0. 096 0. 441 0. 062 0. 330 0. 232

Y2 0. 752 0. 740 0. 900 0. 806 0. 800 0. 185 0. 492 0. 132 0. 170 0. 245

C 0. 789 0. 675 0. 927 0. 782 0. 793 0. 213 0. 535 0. 137 0. 180 0. 266

T 0. 720 0. 699 0. 892 0. 750 0. 765 0. 237 0. 520 0. 148 0. 218 0. 281

M 0. 665 0. 596 0. 907 0. 699 0. 717 0. 282 0. 564 0. 143 0. 222 0. 303

W 0. 560 0. 661 0. 807 0. 593 0. 655 0. 361 0. 572 0. 010 0. 287 0. 308

Y 0. 562 0. 526 0. 832 0. 602 0. 631 0. 364 0. 645 0. 173 0. 201 0. 346

Z 0. 510 0. 498 0. 878 0. 537 0. 606 0. 441 0. 662 0. 039 0. 170 0. 328

N 0. 503 0. 465 0. 874 0. 564 0. 602 0. 393 0. 676 0. 174 0. 149 0. 348

L 0. 326 0. 468 0. 898 0. 372 0. 516 0. 556 0. 707 0. 141 0. 133 0. 384

征;NSE 均普遍较低( <0. 2),说明局部时间尺度上

仍存在一定的规律性,复杂性、随机性较低;HE,norm

均相对集中(0. 1 ~ 0. 3),反映了 10 家水厂日供水量

时间序列的长期相关性特征比较稳定。
各水厂 RS 和 IS 的相关系数达到 0. 95 且呈负

相关性,如图 5 所示,辅助印证了本评价方法的合

理性。
2. 3　 水量预测分析

　 　 基于上述规律性分析、非规律性分析,从水量预

测模型选择、预测结果评价 2 方面,开展各水厂水量

预测分析。 本研究选用源于金融领域的统计学模型

GARCH[15]和机器学习模型 XGBoost[16] ,
 

如表 2 所

示。 利用这 2 个模型,针对上述 10 家水厂开展预测

周期为 30 ~ 60
 

d 的水量研究。 在完成必要的特征

工程和划分训练集、测试集的基础上,经模型训练

　 　 　

图 5　 RS、IS 相关性示意图

Fig. 5　 Correlation
 

Diagram
 

of
 

RS
 

and
 

IS

(含参数优化)、开展预测评价,模型整体训练、预测

框架如图 6 所示;各水厂 30 ~ 60
 

d 的预测结果的平

均绝对百分比误差(MAPE),如图 7 所示。

表 2　 GARCH 和 XGBoost 模型对比
Tab. 2　 Comparison

  

of
 

GARCH
 

and
 

XGBoost
 

Models
比较方面 GARCH 模型 XGBoost 模型

基本假设 假设时间序列的条件方差依赖于过去的扰动(误差)和方差,
误差项服从特定分布(如正态分布或 t 分布)

作为一种基于集成学习的梯度提升方法,它通过组合多个决
策树的预测来创建学习器;可以处理各种数据类型,不假设
特定的数据分布

参数估计 通常使用最大似然估计(MLE)方法 采用梯度提升框架顺序构建树,优化带有正则化项的损失函
数;参数调整通常涉及交叉验证等技术以防止过拟合

统计检验 使用拉格朗日乘数检验来确定条件异方差性的存在;通过残
差诊断(例如检查残差的自相关性)来评估模型的适用性

通常依赖于交叉验证评估模型性能,缺乏严格的统计推断

解释能力 该模型直接提供了时间序列波动性动态的洞察;参数可以解
释为波动性冲击的持续性和幅度

由于模型的集成性质,可解释性相对较弱;可通过特征重要
性排序等方法了解变量的影响程度

稳定性 模型稳定性要求与滞后平方残差( ARCH
 

项)和滞后条件方
差(GARCH

 

项)相关的参数之和小于 1,否则可能导致非平稳
的波动性过程;对异常值较为敏感

通过正则化技术避免过拟合,提高模型的泛化能力;对异常
值具有一定的鲁棒性
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图 6　 GARCH 模型和 XGBoost 模型训练与预测

流程示意图

Fig. 6　 Schematic
 

Diagram
 

of
 

Training
 

and
 

Prediction
 

Workflow
 

of
 

GARCH
 

and
 

XGBoost
 

Models

　 　 综合表 1 和图 7 可知,GARCH 模型在时间序列

呈现较强自相关(MAAC>0. 70)时,能有效捕捉波动

率的长期持续性。 X 厂 0. 852 的 MAAC 强度(全样

本最高),其残差平方序列满足 GARCH 建模条件;
同时,其 1-CV = 0. 730 与 R0 = 0. 899 表明:X 厂水量

数据的噪声较低, 从而, 使其 MAPE 显著小于

XGBoost。 Y2 厂虽然 TS+SS = 0. 900 接近强季节阈

值,但 IS = 0. 245 ( 全样本次低) 与中等稳定性

(1-CV = 0. 752)保障了 GARCH 有效性。 GARCH 模

型对伪趋势(NSE<0. 05 且 TS+SS>0. 8)场景具较强

的适应性,突出表现在:W 厂因其伪趋势特征明显

(低复杂度 NSE = 0. 01 与高趋势与季节强度 TS+SS
= 0. 807 并存)及 HE,norm = 0. 208 表明 W 厂水量序列

数据,是简单波动模式占据主导,此类序列满足

GARCH 过 程, 使 其 GARCH 的 预 测 效 果 优 于

XGBoost。 Z 厂与 W 厂具备类似的伪趋势特征

(NSE = 0. 039 且 TS + SS = 0. 878 ) 使 GARCH 的

MAPE 较 XGBoost 低。 Y 厂(MAAC = 0. 526)虽然自

相关水平未达到 GARCH 优势阈值,但其 IS = 0. 346
与 R0 = 0. 602 的组合特征表明其非平稳性主要源于

方差波动而非趋势变化,使 GARCH 的 MAPE 较

XGBoost 低。
GARCH 的线性假设在复杂场景中表现出明显

局限,在趋势主导( TS+SS>0. 85 且 1-CV>0. 65)与

混沌噪声场景 ( Hnorm > 0. 65 且 R0 < 0. 6 ) 中, 较

XGBoost 模型 MAPE 更高。 C 厂( TS+SS = 0. 927 全

样本最高且 1-CV = 0. 789)表现为强趋势与季节耦

合(TS+SS>0. 9)且高稳定性(1-CV>0. 75)形成确定

性分量主导结构。 T 厂(R0 = 0. 750 且 Hnorm = 0. 520)
表现中等噪声环境与频谱复杂度平衡 (Hnorm =
0. 52),使树模型分裂准则可有效解析时序依赖。 M
厂在明显不符合强自相关( MAAC>0. 70)与伪趋势

(NSE< 0. 05 且 TS + SS > 0. 8),但符合强季节模式

(TS+SS = 0. 907)的情况下,XGBoost 可准确分离真

实趋势。 N 厂(Hnorm = 0. 676 且 R0 = 0. 564) 表现为

明显的混沌系统特性 ( Hnorm > 0. 65) 与中等噪声

(R0 = 0. 564)组合,构成非线性映射优势空间。 L 厂

(NS = 0. 556,全样本最高且 Hnorm = 0. 707)高噪声强

度与高混沌性,XGBoost 通过缺失值补偿机制和深

度树结构[最大深度( max_depth) = 7]实现噪声免

疫,使得 MAPE 低于 GARCH。
总体上,上述 10 家水厂,可分为高规律性、中规

律性、低规律性和复杂性 4 级。 RS≥0. 8 的作为高

规律性水厂(X 和 Y2)主要由于日水量时间序列数

据较强的自相关性,其序列波动呈现显著持续性和

平稳残差结构。 当自相关性指标 MAAC >0. 70 时,
推荐可有效捕捉波动率长期持续性的 GARCH、
FIGARCH[17]等模型。

RS≥0. 7 且 RS < 0. 8 的为中规律性水厂( C、T
和 M 水厂),以突出趋势 - 季节耦合特征为标志

(TS
 

+
 

SS>0. 85),兼具中等稳定性(1-CV > 0. 65)。
推荐可有效模拟非线性关系的 XGBoost、长短时记

忆网络(LSTM) [18] 等模型,以及可捕捉季节性的先

知 模 型 ( Prophet[19] )、 三 角 函 数 季 节 模 型

(TBATS[20] )等模型。
RS≥0. 6 且 RS<0. 7 的为低规律性水厂(W、Y、
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图 7　 GARCH 模型和 XGBoost 模型预测结果 MAPE 示意图

Fig. 7　 Schematic
 

Diagram
 

of
 

MAPE
 

of
 

Prediction
 

Results
 

from
 

GARCH
 

and
 

XGBoost
 

Models

Z 和 N 水厂),特征为高噪声环境(R0 <0. 6 且 T
 

R0 >
0. 5),其 Hnorm 普遍超过 0. 6。 推荐使用 GARCH、
LightGBM[21] 、CatBoost[22]等可适应强噪声的模型。

RS<0. 6 且复杂性水厂( L 水厂),具有极端噪

声(R0 <0. 4)与混沌频谱特征(Hnorm >0. 7),推荐可

适应非线性情况的 DeepAR[23] 、N-BEATS[24] 等深度

学习模型。
3　 结论与建议
　 　 本研究从时域、频域和复杂性 3 个角度,分别形

成了规律性、非规律性的 4 项指标;通过算术平均值

形成 RS、IS。 以浦西区域 10 家水厂多年积累的日

供应量数据为基础,开展规律性、非规律性的量化评

价和水量预测评价。 结合 10 家水厂供水量 30 ~ 60
 

d 预测结果的分析,形成高规律性、中规律性、低规

律性和复杂性 4 个类别,并分别推荐水量预测模型。

本研究的规律性、非规律性量化评价可为水量

预测模型的选择和应用,提供量化依据。 在一定程

度上缓解了机器学习模型、深度学习类水量预测模

型应用于与生产实践时面临的解释性差、透明度不

高等问题,进而可提升水量预测的可靠性。 具备一

定可靠性的水量预测,在供水系统优化调度方面,可
辅助统筹调整各厂水泵运行模式,避免低效运行或

设备过载,辅助降低能源消耗、设备维修率;在提升

应急响应能力方面,动态可靠的水量预测可辅助快

速识别供需缺口,辅以实时压力监测,可及时调配各

水厂富余供水能力,高效应对用水突增、大口径管道

爆管等突发情况。
本研究的规律性、非规律性指标算法,辅以水厂

日供应量计算采集程序,可动态量化评价水厂运行

状况,动态选择水量预测模型开展预测并及时评价
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预测结果可靠性。 水量预测模型结果,可以应用程

序编程接口方式,为调度、水厂运行管理等相关系统

提供关键输入,推动供水系统运营管理从“经验驱

动”转向“数据驱动”,提升运营管理精细化、科学化

水平。
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